Из каких металлов изготавливают плавкие вставки. Плавкие предохранители – их назначение, типы и виды, устройство и принцип действия

Предохранители (вставки плавкие) - элементы защиты электронной аппаратуры, а так же, питающей сети от различных аварийных ситуаций, случающихся при отказе техники. Электрический предохранитель является неотъемлемой частью защиты электроники. Самые популярные из них - плавкие, стеклянные или керамические, предохранители.

Предохранители подразделяются на группы по техническим и конструктивным данным. Длина и диаметр корпуса должны соответствовать посадочному месту в держателе на плате или в предохранительной колодке. Рабочий ток должен соответствовать току потребления источника питания от питающей сети, а так же, току потребления нагрузки, когда предохранитель установлен на выходе источника, рабочее напряжение - соответствующему напряжению питающего источника.

Предохранители подразделяются на стеклянные и керамические, и по посадочным местам: стандартные (цилиндрические), проволочные (для пайки в монтажные отверстия), ножевые (для специализированных держателей). Для защиты питающих цепей автоэлектроники от короткого замыкания применяются автопредохранители быстрого типа, выбор которых производится по номинальному рабочему току. В современных конструкциях микроэлектроники в качестве защитного элемента применяется Чип-SMD предохранитель, компонент поверхностного монтажа, который характеризуется своим типоразмером и номинальным рабочим током. Одним из новейших элементов защиты является самовосстанавливающийся предохранитель, который способен защитить устройство не только от перегрузки, но и от перегрева.

Качественные изделия компании Bourns хорошо зарекомендовали себя в цепях защиты компьютерной техники, автоэлектроники и телефонии. Аналогичным принципу работы плавкого предохранителя является термопредохранитель - один из лидеров защитного устройства бытовой техники.
Трансформаторы, утюги, электрочайники, калориферы, тепловые фены и пушки, и многие другие электронагреватели, это не весь перечень с используемым защитным элементом - термопредохранителем.

При покупке следует учитывать его предельный рабочий ток и номинальное рабочее напряжение. Для удобства посадки предохранителя в электронных устройствах применяются различные держатели. Среди них держатели, монтируемые на печатную плату, как открытого типа, так и защитного типа, предохранительные колодки, монтируемые на корпус прибора, проводные держатели, применяемые в автоэлектронике, а также многопосадочные под несколько предохранителей, используемые в многофункциональных силовых приборах.

Посмотреть и купить товар вы можете в наших магазинах в городах: Москва, Санкт-Петербург, Волгоград, Воронеж, Екатеринбург, Ижевск, Казань, Калуга, Краснодар, Красноярск, Минск, Набережные Челны, Нижний Новгород, Новосибирск, Омск, Пермь, Ростов-на-Дону, Рязань, Самара, Тверь, Томск, Тула, Тюмень, Уфа, Челябинск. Доставка заказа почтой, через систему доставки Pickpoint или через салоны «Евросеть» в следующие города: Тольятти, Барнаул, Ульяновск, Иркутск, Хабаровск, Ярославль, Владивосток, Махачкала, Томск, Оренбург, Кемерово, Новокузнецк, Астрахань, Пенза, Липецк, Киров, Чебоксары, Калининград, Курск, Улан-Удэ, Ставрополь, Сочи, Иваново, Брянск, Белгород, Сургут, Владимир, Нижний Тагил, Архангельск, Чита, Смоленск, Курган, Орёл, Владикавказ, Грозный, Мурманск, Тамбов, Петрозаводск, Кострома, Нижневартовск, Новороссийск, Йошкар-Ола и др.

Товары из группы «Предохранители (вставки плавкие)» вы можете купить оптом и в розницу.

Плавкий предохранитель – элемент электросети, выполняющий защитную функцию. В отличие от автоматического выключателя после каждого срабатывания он нуждается в замене размыкающей цепь детали. Плавкая вставка, которая сгорает при превышении допустимого значения номинального тока, должна быть выбрана с учетом нагрузки на сеть.

Принцип работы и назначение плавких предохранителей

Внутри вставки предохранителя находится проводник из чистого металла (меди, цинка и пр.) или сплава (стали). Защита цепей основана на физическом свойстве металлов нагреваться при прохождении тока. Многие сплавы обладают и положительным коэффициентом термического сопротивления. Его эффект заключается в следующем:

  • когда ток ниже номинального значения, предусмотренного для проводника, металл равномерно нагревается, успевая рассеивать тепло, и не перегревается;
  • слишком большая сила тока приводит к сильному нагреву, а повышение температуры металла вызывает увеличение его сопротивления;
  • из-за возросшего сопротивления проводник нагревается еще интенсивнее, а при превышении температуры плавления разрушается.

На этом свойстве основана плавка вставки, помещенной в электрический предохранитель. В зависимости от сферы применения форма и сечение проводника могут быть разными: от тонкой проволоки в бытовых и автомобильных приборах до толстых пластин, рассчитанных на силу тока в несколько тысяч ампер (А).

Компактная деталь защищает электрическую цепь от перегрузки и короткого замыкания. При превышении допустимого для сети (т. е. номинального) тока происходит разрушение вставки и разрыв цепи. Восстановить ее работу можно только после замены элемента. Когда есть дефект в подключенном оборудовании, предохранители сгорают сразу после включения неисправного прибора, позволяя определить причину. Если в сети произошло короткое замыкание, защитное устройство срабатывает так же.

Условное графическое обозначение на схеме

Согласно Единой системе конструкторской документации России, на графических схемах электроцепей плавкие предохранители обозначают прямоугольником, внутри которого проходит прямая линия. Ее концы соединяются с 2 частями цепи до и после защитного устройства.

В документации к приборам импортного производства можно встретить и другие обозначения:

  • прямоугольник с отделенными частями в торцах (стандарт IEC);
  • волнистая линия (IEEE/ANSI).

Виды и типы плавких предохранителей

Для применения в электроцепях используют разные типы и разновидности ПП. Выпускаемые в России изделия отличаются по типу конструкции:


Понятие наполненности связано с наличием внутри отдельных видов вставок вещества, гасящего электродугу, возникающую в момент перегорания проводника. Цепь будет разомкнута только после ее исчезновения. Поэтому в колбах, наполненных ПП, находится кварцевый песок. Ненаполненные способны выделять газы, гасящие дугу. Это происходит при нагреве материала корпуса вставки.

Кроме типов, различают виды ПП:

  1. Слаботочные применяют в маломощных бытовых приборах с потребляемым током силой до 6 А. Это цилиндрические вставки с контактами на торцах.
  2. Вилочные ПП часто ставят в автомобили. Название обусловлено внешним видом: контакты находятся на одной стороне корпуса и вставляются в разъемы, как вилка в розетку.
  3. Пробковые – распространенные в однофазных сетях электрические пробки для счетчика. Номинальный ток таких вставок составляет 63 А, они рассчитаны на единовременное включение нескольких бытовых приборов. Перегорающая вставка в таком предохранителе находится внутри керамического корпуса с патроном, снаружи остается 1 контакт, а другой соединяется с контактами пробки. При превышении нагрузки деталь сгорает, полностью обесточивая квартиру. Восстановить электроснабжение можно, заменив вставку на новую.
  4. Трубчатый ПП по строению напоминает вставку для пробок, но его крепление выполнено между 2 контактами. Тип такого предохранителя – ненаполненный, а корпус сделан из фибры, которая при сильном нагреве выделяет газ.
  5. Ножевые предохранители рассчитаны на величину тока 100-1250 А и применяются в сетях, где нужна высокая нагрузка (например, при подключении прибора с мощным двигателем).
  6. Кварцевые, с наполнением кварцевым песком, применяются в сетях с напряжением до 36 кВ.
  7. Газогенерирующие, разборные и неразборные. При сгорании разновидностей ПСН, ПВТ происходит мощное выделение газа, сопровождающееся хлопком. ПП применяют для сетей с напряжением 35-110 кВ. Номинальный ток такого ПП – до 100А.

В зависимости от общей нагрузки на сеть устанавливают разные виды ПП – более мощные ставят в специальных трансформаторных будках, они могут выдерживать ток, обеспечивающий потребности жилого массива иди предприятия. Маломощные монтируют в счетчиках: они защищают отдельные квартиры. В старых бытовых приборах тоже может быть установлен ПП (слаботочный), но современная техника содержит эти элементы редко.

Выбор плавкой вставки предохранителя

Выбор предохранителей производят с учетом их номиналов, времятоковой характеристики и общей нагрузки на сеть (суммарной мощности всех работающих элементов). Номинальным током ПП называют тот, который плавкая вставка сможет выдержать до разрушения. Эта величина указана на ее корпусе (например, маркировка 63 А для пробковых бытовых предохранителей).

Времятоковые характеристики вычисляют по специальным графикам. Их необходимо учитывать только при включении в сеть электродвигателя, пусковой ток которого превышает рабочее напряжение в несколько раз. При использовании нескольких таких приборов (на предприятии) вычисляют пусковой момент самого мощного двигателя.

Общая (максимальная) мощность нагрузки сети складывается из всех рабочих токов приборов (указаны в инструкциях и на корпусе). Если в сеть включен электродвигатель, то учитывают и его пусковой момент, разделенный на коэффициент k =2,5 (для легкого пуска и короткозамкнутого ротора) или 2-1,6 (для тяжело запускающихся или фазных роторов).

Чтобы не тратить время на вычисления, подберите номинальный ток плавкой вставки по таблице.

Вт 10 50 100 150 250 500 800 1000 1200 1600 2000 2500 3000 4000 6000 8000 10000
А 0,1 0,25 0,5 1 2 3 4 5 6 8 10 12 15 20 30 40 50

Первая строка (Вт) обозначает мощность прибора, указанную на его корпусе, а вторая (А) – номинал предохранителя. Для квартирной сети придется сложить значения в Вт всех домашних приборов и найти в таблице подходящее число.

Расчет диаметра проволоки плавкого предохранителя

Сложные расчеты производят для того, чтобы временно отремонтировать сгоревшую вставку, если нет возможности ее заменить. Чтобы сеть была защищена от перегрузки, толщина проволоки, используемой для установки «жучка», должна соответствовать номиналу разрушенной вставки. Для сети городской квартиры, где устанавливают ПП номиналом 63 А, можно использовать медную проволоку диаметром 0,9 мм.

Если требуется ремонт другого защитного устройства, то нужно определить номинал ПП (указан на корпусе), а затем определить соответствие имеющейся медной проволоки:

  • измерить ее диаметр;
  • возвести это число в куб и из значения извлечь квадратный корень;
  • полученную цифру умножить на 80.

Итог должен быть примерно равен указанному на корпусе номиналу ПП.

При ремонте выбранная проволока наматывается на контакты сгоревшей вставки, соединяя их. Жучок вставляют в гнездо на корпусе предохранителя.

Если проволока плавится снова, значит, неисправность находится в защищаемом приборе или в сети квартиры, и они подлежат ремонту. Использовать более толстую проволоку нельзя, т. к. это может привести к возгоранию.

Проверка работоспособности

Современные автомобильные предохранители иногда имеют встроенный индикатор перегорания. Он сообщает владельцу, что деталь нужно заменить. В слаботочных ПП через прозрачный корпус видно проволоку. Но часть ПП непрозрачна и не имеет индикаторов.

Если визуально определить разрыв проводника внутри ПП невозможно, то определить его работоспособность можно мультиметром. Перед тем как проверить предохранитель тестером, нужно выбрать минимальное значение сопротивления (Ом). Щупы тестера приложить к контактам ПП и определить показания прибора:

  • при нулевом или близком к 0 значению сопротивления делают вывод о работоспособности вставки;
  • если тестер показывает 1 или знак бесконечности, то ПП сгорел.

Если у тестера есть звуковое устройство, можно просто прозвонить предохранитель, приложив щупы к контактам. Писк тестера свидетельствует об исправности элемента.

Предохранитель - это коммутационный электрический аппарат, предназначенный для отключения защищаемой цепи разрушением специально предусмотренных для этого токоведущих частей под дей­ствием тока, превышающего определенное значение.

В плавких предохранителях отключение цепи происходит за счет расплавления плавкой вставки, которая нагревается протекаю­щим через нее током защищаемой цепи. После отключения цепи не­обходимо заменить плавкую вставку исправной.

Предохранитель включается последовательно в защищаемую цепь, а для создания видимого разрыва электрической цепи и безо­пасного обслуживания совместно с предохранителями применяются неавтоматические выключатели или рубильники.

Предохранители изготавливаются на напряжение переменного тока 42, 220, 380, 660 В и постоянного тока 24, 110, 220, 440 В.

Основными элементами предохранителя являются корпус, плав­кая вставка (плавкий элемент), контактная часть, дугогасительное устройство и дугогасительная среда.

Предохранители характеризуются номинальным током плавкой вставки, т. е. током, на который рассчитана плавкая вставка для дли­тельной работы. В один и тот же корпус предохранителя могут быть вставлены сменные плавкие элементы на различные номинальные то­ки, поэтому сам предохранитель характеризуется номинальным током


предохранителя (основания), который равен наибольшему из номи­нальных токов плавких вставок, предназначенных для данной конст­рукции предохранителя. Например, предохранители серии ПН2 и ПР2 имеют сменные плавкие вставки. Так предохранитель серии ПН2-100 имеет корпус, рассчитанный на ток до 100 А и сменные плавкие вставки на токи 30, 40, 50, 60, 80, 100 А.

Предохранители до 1 кВ изготавливаются на номинальные токи до 1000 А.

В нормальном режиме тепло, выделяемое током нагрузки в плавкой вставке, передается в окружающую среду, и температура всех частей предохранителя не превышает допустимую. При пере­грузке или КЗ температура вставки увеличивается и она расплавляет­ся. Чем больше протекающий ток, тем меньше время плавления. За­висимость времени плавления плавкой вставки от величины тока (кратности тока срабатывания по отношению к номинальному току плавкой вставки) называется защитной (время - токовой) характери­стикой предохранителя (рис. 3.1.). При одном и том же токе время плавления плавкой вставки зависит от многих причин (материала вставки, состояния ее поверхности, условий охлаждения и т. д.). Что­бы уменьшить время срабатывания предохранителя, применяются плавкие вставки из разного материала, специальной формы, а также используется металлургический эффект.

Наиболее распространенными материалами плавких вставок яв­ляются медь, цинк, алюминий, свинец и серебро.

Медные вставки подвержены окислению, их сечение со време­нем уменьшается и защитная характеристика предохранителя изменя­ется. Для уменьшения окисления обычно применяют луженые мед­ные вставки. Температура плавления меди 1080 °С, поэтому при токах, близких к минимальному току плавления, температура всех элементов предохранителя значительно возрастает.

Цинк и свинец имеют низкую температуру плавления (419 °С и 327 °С), что обеспечивает небольшой нагрев предохранителей в продолжительном режиме.

Цинк стоек к коррозии, поэтому сечение плавкой вставки не ме­няется во время эксплуатации, защитная характеристика остается по­стоянной. Цинк и свинец имеют большие удельные сопротивления, поэтому плавкие вставки оказываются большого сечения. Такие плав­кие вставки обычно применяются в предохранителях без наполните­лей. Предохранители со вставками из цинка и свинца имеют большие выдержки времени при перегрузках.


Рис. 3.1. Время-токовая характеристика плавкого предохранителя

Серебряные вставки не окисляются, и их характеристики наибо­лее стабильны.

Алюминиевые вставки применяются в предохранителях в связи с дефицитом цветных металлов. Высокое сопротивление окисных пленок на алюминии затрудняет осуществление надежного разъемно­го контакта. Алюминиевые вставки находят применение в новых кон­струкциях предохранителей серии ПП31.

При больших токах плавкие вставки предохранителей выпол­няются из параллельных проволок или тонких медных полос.

Основной характеристикой предохранителя является времятоковая характеристика, представляющая собой зави­симость времени плавления вставки от протекающего тока. Для совершенной защиты желательно, чтобы времятоковая характеристика предохранителя (кривая 1 на рис. 1.1) во всех точках шла немного ниже характеристики защищае­мой цепи или объекта (кривая 2 на рис. 3.1). Однако ре­альная характеристика предохранителя (кривая 3) пересе­кает кривую 2. Поясним это. Если характеристика предо­хранителя соответствует кривой 1, то он будет перегорать из-за старения или при пуске двигателя. Цепь будет отключаться при отсутствии недопустимых перегрузок. По­этому ток плавления вставки выбирается больше номи­нального тока нагрузки. При этом кривые 2 и 3 пересека­ются. В области больших перегрузок (область Б) предо­хранитель защищает объект. В области А предохранитель объект не защищает.

При небольших перегрузках (l,5–2) I H 0 M нагрев предо­хранителя протекает медленно. Большая часть тепла отда­ется окружающей среде. Сложные условия теплоотдачи затрудняют расчет плавкой вставки.

Ток, при котором плавкая встав­ка сгорает при достижении ею уста­новившейся температуры, называет­ся пограничным током I ПОГР.

Для ускорения плавления вставок из меди и серебра используется металлургический эффект - явление растворения тугоплавких металлов в расплавленных, менее тугоплавких. Если, например, на медную про­волоку диаметром 0,25 мм напаять шарик из оловянно-свинцового сплава с температурой плавления 182 °С, то при температуре проволоки 650 °С она расплавится в течение 4 мин, а при 350 °С - в течение 40 минут. Та же проволока без растворителя плавится при температуре не менее 1000 °С . Для создания металлургического эффекта на мед­ных и серебряных вставках применяют чистое олово, обладающее более стабильными свойствами. В нормальном режиме работы шарик практи­чески не влияет на температуру вставки.


Рис 3.2. Плавкий предохранитель серии ПР2: а - патрон; б - формы плавких вставок

Ускорение плавления вставки достигается также применением плавкой вставки специальной формы (рис. 3.2, б). При токах КЗ узкие участки нагреваются настолько быстро, что отвод тепла почти не происходит. Вставка перегорает одновременно в нескольких сужен­ных местах (сечение А - А и В - В, рис. 3.2, б) прежде, чем ток КЗ достигнет своего установившегося значения в цепи постоянного тока или ударного тока в цепи переменного тока (рис. 3.3).

Рис. 3.3. Токоограничивающий эффект плавких вставок

предохранителей: а - при постоянном токе;

б - при переменном токе

Ток КЗ при этом ограничивается до значения i огр (в 2-5 раз). Та­кое явление называется токоограничивающим действием и улучшает условия дугогашения в предохранителях.

Гашение электрической дуги, возникающей после перегорания плавкой вставки, должно осуществляться в возможно короткое время. Время гашения дуги зависит от конструкции предохранителя.


Наибольший ток, который плавкий предохранитель может от­ключать без каких-либо повреждений или деформаций, называется предельным током отключения.

Предохранители получили широкое применение для защиты электродвигателей, электрооборудования, электрических сетей в про­мышленных, бытовых электроустановках и имеют различную конст­рукцию.

Плавкие предохранители наряду с простотой их устройства и малой стоимостью имеют ряд существенных недостатков:

Не могут защитить линию от перегрузки, так как допускают
длительную перегрузку до момента плавления;

Не всегда обеспечивают избирательную защиту в сети вслед­
ствие разброса их характеристик;

При коротком замыкании в трехфазной сети возможно сраба­
тывание одного из трех предохранителей и линия остается работать
на двух фазах.

В этом случае трехфазные электродвигатели, подключенные к сети, оказываются включенными на две фазы, а это приводит к пе­регреву обмоток электродвигателей и их выходу из строя.

Предохранители с закрытыми разборными корпусами (патрона­ми) без наполнителя серии ПР2 (рис. 3.2) изготавливаются на напря­жение 220 и 500 В и номинальные токи 100-1000 А. Патрон предо­хранителя ПР2 (рис. 3.2, а) на токи 100 А и выше состоит из толстостенной фибровой трубки 1, на которую плотно насажены ла­тунные втулки 3, имеющие мелкую резьбу. На трубки навинчиваются латунные колпачки 4, которые закрепляют плавкую вставку 2, при­винченную к ножам 6, до установки ее в патрон. В предохранителях этой серии предусмотрена шайба 5, имеющая паз для ножа и предот­вращающая поворот ножей.

Патрон вставляется в неподвижные контактные стойки, укреп­ленные на изоляционной плите. Необходимое контактное нажатие обеспечивается пружинами.

Плавкие вставки изготавливаются из цинка в виде пластины с вырезами. На суженных участках выделяется больше тепла, чем на широких. При номинальном токе избыточное тепло благодаря тепло­проводности цинка передается широким частям, поэтому вся вставка имеет примерно одинаковую температуру. При перегрузках нагрев узких участков происходит быстрее, и вставка плавится в самом горя­чем месте (сечение А - А, рис. 3.2, б).


При КЗ вставка плавится в узких сечениях А - А и В - В. Воз­никающая дуга вызывает образование газов (50 % СО 2 , 40 % Н 2 , 10 % паров Н 2 О), так как стенки патрона выполнены из газогенери-рующего материала - фибры. Давление в зависимости от отключае­мого тока может достигать 10 МПа и более, что обеспечивает быстрое гашение дуги и токоограничивающее действие предохранителя. Для уменьшения возникающего при отключении тока КЗ перенапряжения плавкая вставка имеет несколько суженных мест. При их поочеред­ном плавлении полная длина дугового промежутка вводится в цепь не сразу, а ступенями.

Предохранители насыпные серии ПН2 (рис. 3.4) широко приме­няются для защиты силовых цепей до 500 В переменного и 440 В по­стоянного тока и выпускаются на номинальные токи 100-1000 А.


1 2

Рис. 3.4. Плавкий предохранитель серии ПН2

Фарфоровая, квадратная снаружи и круглая внутри, трубка 1 имеет четыре резьбовых отверстия для винтов, с помощью которых крепится крышка 4 с уплотняющей прокладкой 5. Плавкая вставка 2 приварена электроконтактной точечной сваркой к шайбам контакт­ных ножей 3. Крышки с асбестовыми прокладками герметически за­крывают трубку. Трубка заполнена сухим кварцевым песком 6. Плав­кая вставка выполнена из одной или нескольких медных ленточек толщиной 0,15-0,35 мм и шириной до 4 мм. На вставке сделаны про­рези 7, уменьшающие сечение вставки в 2 раза. Для снижения темпе­ратуры плавления вставки используется металлургический эффект -на полоски меди напаяны шарики олова 8, температура плавления в этом случае не превышает 475 °С, дуга возникает в нескольких па­раллельных каналах (в соответствии с числом вставок); это обеспечи­вает наименьшее количество паров металла в канале между зернами кварца и наилучшие условия гашения дуги в узкой щели. Насыпные


предохранители, так же как предохранители серии ПР2, обладают то-коограничивающим свойством.

Для уменьшения возникающих перенапряжений плавкая вставка имеет по длине прорези, причем их количество зависит от номиналь­ного напряжения предохранителя (из расчета 100-150 В на участок между прорезями). Так как вставка сгорает в узких местах, то длинная дуга оказывается разделенной на ряд коротких дуг, суммарное на­пряжение, которых не превышает суммы катодных и анодных паде­ний напряжения .

Наполнителем в предохранителях серии ПН является чистый кварцевый песок (99 % SiO2). Вместо кварца может быть применен мел (СаСО3), иногда его смешивают с асбестовым волокном. При возникновении дуги мел разлагается с выделением углекислого газа СО 2 и СаО - тугоплавкого материала. Реакция происходит с погла-щением энергии, что способствует гашению дуги.

Предельный отключаемый ток предохранителей серии ПН2 дос­тигает 50 кА.

Насыпные предохранители серии НПН имеют неразборный стеклянный патрон без контактных ножей и рассчитаны на токи до 60 А.

Взамен предохранителей ПН2 разработаны предохранители серии ПП-31 с алюминиевыми вставками на номинальные токи 63-1000 А и имеющие предельный ток отключения до 100 кА при напряжении 660 В.

Предохранители серии ПП-17 изготавливаются на токи 500-1000 А, напряжение переменного тока 380 В и постоянного тока 220 В. Предель­ная отключающая способность предохранителей ПП-17 100-120 кА. Предохранитель состоит из плавкого элемента, помещенного в кера­мический корпус, заполненный кварцевым песком, указателя сраба­тывания и свободного контакта. При расплавлении плавкого элемента предохранителя перегорает плавкий элемент указателя срабатывания, освобождая введенный при сборке указателя боек, который переклю­чает свободный контакт, и замыкается цепь сигнализации срабатыва­ния предохранителя.

Для защиты полупроводниковых приборов разработаны быст­родействующие предохранители серии ПП-41, ПП-57, ПП-59, ПП-71. Эти предохранители выполняются с плавкими вставками из серебря­ной фольги в закрытых патронах с засыпкой кварцевым песком. Они рассчитаны на установку в цепях переменного тока напряжением


380-1250 В и постоянного тока 230-1050 В. Электротехническая промышленность изготавливает предохранители на номинальные то­ки 100-2000 А, предельные токи отключения до 200 кА. Эти предо­хранители обладают эффективным токоограничивающим действием.

В схемах управления станков, механизмов, машин, а также в системах электроснабжения жилых и общественных зданий широко применяются пробочные плавкие предохранители серии ПРС. Номи­нальный ток корпуса 6; 25; 63; 100 А.

Предохранители - это коммутационные электротехнические изделия, используемые для защиты электрической сети от сверхтоков и токов короткого замыкания. Принцип действия предохранителей основан на разрушении специально предназначенных для этого токоведущих частей (плавких вставок) внутри самого устройства при протекании по ним тока, величина которого превышает определенное значение.


Плавкие вставки являются основным элементом любого предохранителя. После перегорания (отключения тока) они подлежат замене. Внутри плавкой вставки располагается плавкий элемент (именно он и перегорает), а также дугогасительное устройство. Плавкая вставка чаще всего изготавливается из фарфорового или фибрового корпуса и крепится в специальные токопроводящие части предохранителя. Если предохранитель предназначен на малые токи, то плавкая вставка для него может не иметь корпуса, т. е. быть бескорпусной.


К основным характеристикам плавких ставок предохранителя можно отнести: номинальный ток, номинальное напряжение, отключающая способность.


Также к элементам предохранителя относятся:


Держатель плавкой вставки - съемный элемент, главное предназначение которого удерживать плавкую вставку;


Контакты плавкой вставки - часть предохранителя, которая обеспечивает электрическую связь между проводниками и контактами плавкой вставки;


Боек предохранителя - специальный элемент, задача которого при срабатывании предохранителя воздействовать на другие устройства и контакты самого предохранителя.


Все предохранители делятся на несколько десятков видов:


По конструкции плавких вставок предохранители бывают разборные и неразборные. У разборных предохранителей можно заменять плавкую вставку после ее перегорания, у неразборных предохранителей это сделать не получится;


Присутствию наполнителя. Бывают предохранители с наполнителем и без наполнителя;


Конструкции изготовления плавких вставок. Различают предохранители с ножевыми, болтовыми и фланцевыми контактами;


Корпусу плавкой вставки предохранители делятся на трубчатые и призматические. У первого вида предохранителей плавкая вставка имеет цилиндрическую форму, у второго вида - форму прямоугольного параллелепипеда;


Виду плавких вставок в зависимости от диапазона токов отключения. Есть предохранители с отключающей способностью в полном диапазоне токов отключения - g и с отключающей способностью в части диапазона токов отключения - а;


Быстродействию. Есть предохранители небыстродействующие (используются в большинстве случаев в трансформаторах, кабелях, электрических машинах) и быстродействующие (применяются в полупроводниковых приборах);


Конструкции основания предохранители могут быть с калибровочным основанием (в таких предохранителях не удастся установить плавкую вставку, предназначенную для работы с большим, чем сам предохранитель, номинальным током) и с некалиброванным основанием (в такие предохранители можно установить плавкую вставку, номинальный ток которой больше номинального тока самого предохранителя);


Напряжению предохранители делятся на низковольтные и высоковольтные;


Количеству полюсов. Бывают одно-, двух-, трехполюсные предохранители;


Наличию и отсутствию свободных контактов. Есть предохранители со свободными контактами и без них;


Присутствию бойка и указателя срабатывания предохранители бывают - без бойка и без указателя, с указателем без бойка, с бойком без указателя, с указателем и бойком;


Способу крепления проводников предохранители делятся на предохранители с передним присоединением, задним, универсальным (и задним, и передним);


Способу монтажа. Есть предохранители на собственном основании и без него.


Исторически сложилось так, что механическое исполнение корпусов предохранителей и их габаритные и присоединительные размеры различны в разных странах. Существуют четыре основных национальных стандарта на присоединительные размеры предохранителей: североамериканский, немецкий, британский и французский. Есть также ряд корпусов предохранителей, одинаковых для разных стран и не относящихся к национальным стандартам. Чаще всего такие корпуса относятся к стандартам фирмы-производителя, разработавшей конкретный тип прибора, который оказался удачным и закрепился на рынке. В последние десятилетия, в рамках процессов глобализации экономики, производители постепенно присоединяются к международной системе стандартов корпусов предохранителей для упрощения условий взаимозаменяемости приборов. При выборе следует стараться использовать предохранители международных стандартов: IEC 60127, IEC 60269, IEC 60282, IEC 60470, IEC60549, IEC 60644.


Необходимо отметить, что по виду плавких вставок в зависимости от диапазона токов отключения и быстродействия предохранители разделены на классы использования. При этом первая буква указывает функциональный класс, а вторая - подлежащий защите объект:


1-я буква:


a - защита с отключающей способностью в части диапазона (accompanied fuses): плавкие вставки предохранителей способные как минимум длительно пропускать токи, не превышающие указанного для них расчетного тока, и отключать токи определенной кратности относительно расчетного тока вплоть до расчетной отключающей способности;


g - защита с отключающей способностью во всем диапазоне (general purpose fuses): плавкие вставки предохранителей, способные как минимум длительно пропускать токи, не превышающие указанного для них расчетного тока, и отключать токи от минимального тока выплавления и до расчетной отключающей способности.


2-я буква:


G - защита кабелей и проводов;


M - защита коммутационных аппаратов/двигателей;


R - защита полупроводников/тиристоров;


L - защита кабелей и проводов (в соответствии со старой, уже не действующей нормой DIN VDE);


Tr - защита трансформаторов.


Общий вид времятоковых характеристик плавких предохранителей основных категорий использования приведен на рисунке 2.1.


Плавкие вставки со следующими классами использования обеспечивают:


gG (DIN VDE/МЭК) - защита кабелей и проводов во всем диапазоне;


aM (DIN VDE/МЭК) - защита коммутационных аппаратов в части диапазона;


aR (DIN VDE/МЭК) - защита полупроводников в части диапазона;


gR (DIN VDE/МЭК) - защита полупроводников во всем диапазоне;


gS (DIN VDE/МЭК) - защита полупроводников, а также кабелей и линий во всем диапазоне.


Предохранители с отключающей способностью во всем диапазоне (gG, gR, gS) надежно отключают как при токах КЗ, так и при перегрузках.



Рис. 2.1.


Предохранители с отключающей способностью в части диапазона (aM, aR) служат исключительно для защиты от короткого замыкания.


Для защиты установок на напряжение до 1000 В используют электрические, трубчатые и открытые (пластинчатые) предохранители.


Электрический предохранитель состоит из фарфорового корпуса и пробки с плавкой вставкой. Питающую линию присоединяют к контакту предохранителя, отходящую - к винтовой резьбе. При коротком замыкании или перегрузке плавкая вставка перегорает, и ток в цепи прекращается. Применяют следующие типы электрических предохранителей: Ц-14 на ток до 10 А и напряжение 250 В с прямоугольным основанием; Ц-27 на ток до 20 А и напряжением 500 В с прямоугольным или квадратным основанием и Ц-33 на ток до 60 А и напряжение 500 В с прямоугольным или квадратным основанием.


Например, электрические предохранители резьбовые, серии ПРС, предназначены для защиты от перегрузок и коротких замыканий электрооборудования и сетей. Номинальное напряжение предо


хранителей - 380 В переменного тока частотой 50 или 60 Гц. Конструктивно предохранители ПРС (рис. 2.2) состоят из корпуса, плавкой вставки ПВД, головки, основания, крышки, центрального контакта.


Предохранители ПРС выпускаются на номинальные токи плавкой вставки от 6 до 100 А. В обозначении предохранителя указывается, какого он присоединения: ПРС-6-П - предохранитель на 6 А, переднего присоединения проводов; ПРС-6-З - предохранитель на 6А, заднего присоединения проводов.


Предохранители цилиндрические ПЦУ-6 и ПЦУ-20 с резьбовым цоколем Ц-27 и плавкими вставками на токи 1, 2, 4, 6, 10, 15, 20 ампер выпускаются в пластмассовом корпусе. Предохранители ПД имеют основание из фарфора, а у предохранителей ПДС материал основания - стеатит. В бытовых условиях применяют автоматические пробочные предохранители, где защищаемая цепь восстанавливается кнопкой.


Трубчатые предохранители выпускают следующих типов: ПР-2, НПН и ПН-2. Предохранитель ПР-2 (предохранитель разборный) предназначен для установки в сетях напряжением до 500 В и на токи 15, 60, 100, 200, 400, 600 и 1000 А.


В патроне предохранителя ПР-2 (рис. 2.3) плавкая вставка 5, прикрепляемая винтами 6 к контактным ножам 1, помещена в фибровую трубку 4, на которую насажены втулки 3 с резьбой. На них навинчены латунные колпачки 2, закрепляющие контактные ножи, которые входят в неподвижные пружинящие контакты, устанавливаемые на изоляционной плите. 




Рис. 2.2.




Рис. 2.3.


Под действием электрической дуги, возникающей при перегорании предохранителя, внутренняя поверхность фибровой трубки разлагается, и образуются газы, способствующие быстрому гашению дуги.


К закрытым предохранителям с мелкозернистным наполнителем относятся предохранители типа НПН, НПР, ПН2, ПН-Р, КП. У предохранителей типа НПН (наполненный предохранитель неразборный) трубка стеклянная. У остальных трубки фарфоровые. Предохранители типа НПН имеют цилиндрическую форму, ПН - прямоугольную.


Комплект предохранителя НПН состоит из: плавкой вставки - 1 шт; контакт-основания - 2 шт.


Предохранители НПН изготовляют на напряжение до 500 В и токи от 15 до 60 А, предохранители ПН2 (предохранитель насыпной разборный) - на напряжение до 500 В и токи от 10 до 600 А. В насыпных предохранителях плавкие вставки, выполненные из нескольких параллельных медных или посеребренных проволок, помещены в закрытый фарфоровый патрон, заполненный кварцевым песком. Кварцевый песок способствует интенсивному охлаждению и деионизации газов, появляющихся при горении дуги. Так как трубки закрыты, то брызги расплавленного металла плавких вставок и ионизированные газы не выбрасываются наружу. Это уменьшает пожарную опасность и повышает безопасность обслуживания предохранителей. Предохранители с наполнителем так же, как и предохранители типа ПР, - токоограничивающие.


Пластинчатые открытые предохранители состоят из медных или латунных пластин - наконечников, в которые впаяны медные калиброванные проволоки. Наконечники с помощью болтов присоединяют к контактам на изоляторах.


Предохранители типа НПР - патрон закрытый разборный (фарфоровый) с наполнителем из кварцевого песка на номинальные токи до 400 А.


Предохранители ПД (ПДС) - 1, 2, 3, 4, 5 - с наполнителем для установки непосредственно на токоведущие шины на токи от 10 до 600 А.


Для защиты силовых вентилей полупроводниковых преобразователей средней и большой мощности при внешних и внутренних коротких замыканиях широко применяются быстродействующие плавкие предохранители, которые являются самыми дешевыми средствами защиты. Они состоят из контактных ножей и плавкой вставки из серебряной фольги, помещенных в закрытый фарфоровый патрон. 


Плавкая вставка таких предохранителей имеет узкие калиброванные перешейки, которые снабжены радиаторами из хорошо проводящего тепло керамического материала, посредством которых тепло отводится к корпусу предохранителя. Эти радиаторы служат также дугогасительными камерами с узкой щелью, что значительно улучшает гашение дуги, возникающей в области перешейка. Параллельно плавкой вставке установлен сигнальный патрон, блинкер которого сигнализирует о расплавлении плавкой вставки и, воздействуя на микровыключатель, замыкает сигнальные контакты.


Длительное время промышленностью выпускались два типа быстродействующих плавких предохранителей, предназначенных для защиты от токов короткого замыкания преобразователей с силовыми полупроводниковыми вентилями:


1) предохранители типа ПНБ-5 (рис. 2.4, а) для работы в цепях с номинальным напряжением до 660 В постоянного и переменного тока на номинальные токи 40, 63, 100, 160, 250, 315, 400, 500 и 630 А;


2) предохранители типа ПБВ для работы в цепях переменного тока с частотой 50 Гц номинальным напряжением 380 В на номинальные токи от 63 до 630 А.




Рис. 2.4.


В настоящее время промышленностью выпускаются предохранители типа ПНБ-7 (рис. 2.4, б) на номинальный ток 1000 А и на номинальные напряжения электрической цепи 690 В переменного тока. Плавкие элементы предохранителя ПНБ-7 выполнены из чистого серебра (быстродействие и долговечность). Контакты (выводы) предохранителя созданы из электротехнической меди с гальваническим покрытием (высокая токопроводность и долговечность).


Корпус предохранителя сделан из высокопрочного ультрафарфора. Конструкция предохранителя позволяет применять дополнительные устройства - указатель срабатывания, свободный контакт.


Структура условного обозначения предохранителей ПНБ7- 400/100-Х1-Х2:


ПНБ-7 - обозначение серии; 


400 - номинальное напряжение, В;


100 - номинальный ток;


Х1 - условное обозначение вида монтажа и вида присоединения проводников к выводам: 2 - на собственном изоляционном основании с контактами основания; 5 - на основаниях комплектных устройств с контактами основания; 8 - без основания, без контактов (плавкая вставка);


Х2 - условное обозначение наличия указателя срабатывания: 0 - без сигнализации; 1 - с бойком и свободным контактом; 2 - с указателем срабатывания; 3 - с бойком.


Плавкие предохранители промышленного назначения серии ПП предназначены для защиты электрооборудования промышленных установок и электрических цепей от перегрузок и коротких замыканий.


Выпускаются предохранители данной серии следующих основных типов: ПП17, ПП32, ПП57, ПП60С. Предохранители изготавливают с указателем срабатывания, с указателем срабатывания и свободным контактом или без сигнализации. В зависимости от типа предохранители рассчитаны на напряжение до 690 В и на номинальные токи от 20 А до 1000 А. Конструктивные особенности позволяют устанавливать свободные контакты замыкающие или размыкающие, а также способ монтажа - на собственном основании, на основании комплектных устройств, на проводниках комплектных устройств.


Структура обозначения предохранителей типа ПП17 и ПП32 - Х1Х2 - Х3 - Х4 - ХХХХ:


1) Х1Х2 - условное обозначение габарита (номинальный ток, А): 31 -100А; 35 - 250А; 37 - 400А; 39 - 630А.


2) Х3 - условное обозначение вида монтажа и вида присоединения: 2 - на собственном основании, 5 - на основании комплектных устройств, 7 - на проводниках комплектных устройств (болтовое присоединение), 8 - без основания (плавкая вставка), 9 - без основания (плавкая вставка в части размеров унифицирована с предохранителями ПН2-100 и ПН2-250).


3) Х4 - условное обозначение наличия указателя срабатывания, бойка, свободного контакта: 0 - без сигнализации, 1 - с бойком и свободным контактом, 2 - с указателем срабатывания, 3 - с бойком.


4) ХХХХ - климатическое исполнение: УХЛ, Т и категория размещения 2, 3.


В настоящее время полупроводниковые преобразователи оснащаются предохранителями серии ПП57 (рис. 2.5, а) и ПП60С (рис. 2.5, б).



Рис. 2.5.


Первые предназначены для защиты преобразовательных агрегатов при внутренних коротких замыканиях переменного и постоянного тока при напряжениях 220 - 2000 В на токи 100, 250, 400, 630 и 800 А. Вторые - при внутренних коротких замыканиях переменного тока при напряжениях 690 В на токи 400, 630, 800 и 1000 А.


Структура обозначения предохранителей типа ПП57 - ABCD - EF:


Буквы ПП - предохранитель плавкий;


Двузначное число 57 - условный номер серии;


А - двузначное число - условное обозначение номинального тока предохранителя;


В - цифра - условное обозначение номинального напряжения предохранителя;


С - цифра - условное обозначение по способу монтажа и виду присоединения проводников к выводам предохранителя (например, 7 - на проводниках преобразовательного устройства - болтовое с уголковыми выводами);


D - цифра - условное обозначение наличия указателя срабатывания и контакта вспомогательной цепи:


0 - без указателя срабатывания, без контакта вспомогательной



1 - с указателем срабатывания, с контактом вспомогательной



2 - с указателем срабатывания, без контакта вспомогательной цепи;


Е - буква - условное обозначение климатического исполнения;




Пример условного обозначения предохранителя: ПП57-37971-УЗ.


Предохранители плавкие ППН предназначаются для защиты кабельных линий и промышленных электроустановок от токов перегрузки и короткого замыкания. Предохранители применяются в электрических сетях переменного тока частотой 50 Гц с напряжением до 660 В и устанавливаются в низковольтные комплектные устройства, например, в распределительные панели ЩО-70, вводно-распределительные устройства ВРУ1, шкафы распределительные силовые ШРС1 и т. п.


Преимущества предохранителей ППН:


1) корпус предохранителя и основание держателя изготовлены из керамики;


2) контакты предохранителя и держателя изготовлены из электротехнической меди;


3) корпус предохранителей засыпан мелкодисперсным кварцевым песком;


4) габаритные размеры предохранителей на ~15 % меньше предохранителей ПН-2;


5) потери мощности на ~40 % меньше, чем у предохранителей ПН-2;


6) наличие индикатора срабатывания;


7) предохранители монтируются и демонтируются с помощью универсального съемника.


Особенности конструкции предохранителей серии ППН приведены на рис. 2.6 .


Предохранители плавкие серии ППНИ (рис. 2.7) общего применения предназначены для защиты промышленных электроустановок и кабельных линий от перегрузки и короткого замыкания и выпускаются на номинальные токи от 2 до 630 А.


Используются в однофазных и трехфазных сетях напряжением до 660 В частоты 50 Гц. Области применения предохранителей ППНИ: вводно-распределительные устройства (ВРУ); шкафы и пункты распределительные (ШРС, ШР, ПР); оборудование трансформаторных подстанций (КСО, ЩО); шкафы низкого напряжения (ШР-НН); шкафы и ящики управления. 





Рис. 2.6.


Вследствие использования качественных современных материалов и новой конструкции, в предохранителях ППНИ снижены потери мощности по сравнению с предохранителями ПН-2. Данные, представленные в таблице 2.1, показывают экономичность предохранителей ППНИ по сравнению с ПН-2.





Рис. 2.7.





Контакты предохранителя и держателя выполнены из электротехнической меди с гальваническим покрытием сплавом олово-висмут, что предотвращает их окисление в процессе эксплуатации.




Основание держателя (изолятор) выполнено из армированной термореактивной пластмассы, стойкой к коррозии, механическим воздействиям, перепадам температуры и динамическим ударам, которые возникают при коротких замыканиях вплоть до 120 кА.




Контакты плавкой вставки выполнены в форме ножа (заострены), что позволяет их устанавливать в держатели с меньшими усилиями.




Все габариты плавких вставок ППНИ удобно устанавливать или демонтировать универсальной рукояткой съема РС-1, изоляция которой выдерживает напряжение до 1000 В. 




Для быстрого и эффективного дугогашения корпус плавкой вставки наполнен кварцевым песком высокой химической очистки.




Плавкий элемент выполнен из фосфористой бронзы (сплав меди с цинком с добавлением фосфора) и надежно соединен точечной сваркой с выводами предохранителя.




В конструкции плавкой вставки есть специальный индикатор, выполненный в виде выдвижного штока, который позволяет визуально определять сработавшие предохранители.




Предохранители ППНИ с отключающей способностью во всем диапазоне «gG» надежно срабатывают как при токах короткого замыкания, так и при перегрузках.




Конструкция, технические параметры, габаритные и установочные размеры плавких вставок и держателей ППНИ соответствуют современным стандартам МЭК и ГОСТ, а, следовательно, этими предохранителями можно заменять другие отечественные и импортные предохранители.

Выбор плавких вставок предохранителей


Предохранители устанавливаются на всех ответвлениях, если сечение провода на ответвлении меньше сечения провода в магистрали, на вводах и в головных участках сети в вводнораспределительных устройствах, шкафах распределительных силовых и силовых ящиках комплектно с рубильниками или на отдельных панелях. Для избирательности действия необходимо, чтобы каждый следующий предохранитель по направлению к источнику тока имел


номинальный ток плавкой вставки хотя бы на одну ступень больше, чем предыдущий.


Для расчета защиты сетей и оборудования, выполненной с помощью плавких предохранителей, необходимы следующие данные:


Номинальное напряжение предохранителя;


Максимальный ток короткого замыкания, отключаемый предохранителем;


Номинальный ток предохранителя;


Номинальный ток плавкой вставки предохранителя;


Защитная характеристика предохранителя.


Номинальным напряжением предохранителя (Uном,пр) называется


указанное на нем напряжение, для продолжительной работы при котором он предназначен. Действительное напряжение сети (Uс) не должно превышать номинального напряжения предохранителя больше чем на 10 %:


Uс ≤ 1,1 Uном,пр (2.1)


Номинальным током предохранителя (Iном,пр) называется указанный на нем ток, равный наибольшему из номинальных токов плавких вставок (Imax ном,ПВ), предназначенных для данного предохранителя. Это максимальный длительный ток, пропускаемый предохранителем по условию нагрева его деталей, кроме вставок.


Iном,пр = Imax ном,ПВ (2.2)


Максимальным отключаемым током (разрывной способностью) предохранителя (Imах,пр) называется наибольшее значение (эффективное) периодической составляющей тока, отключаемого предохранителем без разрушения и опасного выброса пламени или продуктов горения электрической дуги. Эта величина предохранителей для каждого типа может изменяться в зависимости от напряжения, номинального тока предохранителя, величины соsф в отключаемой цепи и прочих условий.


Номинальным током плавкой вставки предохранителя (Iном,ПВ) называется указанный на ней ток, для продолжительной работы при котором она предназначена. Практически это максимальный длительный ток, пропускаемый вставкой (Imax,ПB), по условию допустимого нагрева самой вставки. 


Iном,ПВ = Imax,ПВ (2.3)


Обычно, кроме номинального тока вставки, указывают еще два значения так называемых испытательных токов, по которым калибруются вставки. Нижнее значение испытательного тока плавкая вставка должна выдерживать определенное время, обычно 1 ч, не расплавляясь; при верхнем значении испытательного тока вставка должна перегорать за время не больше определенного, обычно также 1 ч.


Основными данными для определения времени cгoрания вставки, а, следовательно, и селективности последовательно включенных предохранителей являются их защитные характеристики.


Защитной характеристикой предохранителя называется зависимость полного времени отключения (суммы времени плавления вставки и времени горения дуги) от величины отключаемого тока.


Защитные характеристики обычно даются в виде графика, в прямоугольных координатах. По вертикальной оси координат откладывается время, а по горизонтальной оси - кратность тока, отключаемого предохранителем, к номинальному току вставки, или отключаемый ток.


Избирательность (селективность) защиты плавкими предохранителями обеспечивается подбором плавких вставок таким образом, чтобы при возникновении короткого замыкания, например, на ответвлении к электроприемнику, срабатывал ближайший плавкий предохранитель, защищающий этот электроприемник, но не срабатывал предохранитель, защищающий головной участок сети.


Выбор плавких вставок предохранителей по условию селективности следует производить, пользуясь типовыми защитными характеристиками предохранителей, с учетом возможного разброса реальных характеристик по данным завода-изготовителя.


Типичная времятоковая характеристика современного предохранителя двойного действия приведена на рисунке 2.8.


При номинальном токе 200 А предохранитель должен работать неограниченное время. По характеристике видно, что при уменьшении тока время срабатывания в области малых токов быстро растет и кривая зависимости в идеале должна асимптотически стремиться к прямой I = 200 А, для времени t = + ∞. В области рабочих перегрузок, то есть в случае, когда ток через предохранитель находится в пределах (1-5)⋅Iном, время срабатывания предохранителя достаточно велико - превышает единицы секунд (при токе 1000А время срабатывания равно 10с).


Такой вид зависимости позволяет защищаемому оборудованию свободно работать во всем диапазоне рабочих перегрузочных характеристик. При дальнейшем увеличении тока, крутизна времятоковой характеристики (рис. 2.8) быстро возрастает, и уже при одиннадцатикратной перегрузке время срабатывания составляет всего 10 мс. Дальнейший рост тока перегрузки сокращает время срабатывания еще в большей степени, хотя и не так быстро, как на участке между пяти- и десятикратной перегрузки. Это объясняется конечной скоростью гашения дуги из-за конечной теплоемкости материала наполнителя, конечной теплоты плавления материала плавкой перемычки и определенной массы плавящегося и испаряющегося металла перемычки. При дальнейшем увеличении тока (более чем 15-20-кратно относительно номинального) время срабатывания плавкого элемента может составлять 0,02-0,5 мс в зависимости от типа и конструкции предохранителя.



Рис. 2.8.


При номинальном токе 200 А предохранитель должен работать неограниченное время. По характеристике видно, что при уменьшении тока, время срабатывания в области малых токов быстро растет, и кривая зависимости в идеале должна асимптотически стремиться к прямой I = 200 А, для времени t = + ∞. В области рабочих перегрузок, т. е. в случае, когда ток через предохранитель находится в пределах (1-5)⋅Iном, время срабатывания предохранителя достаточно велико - превышает единицы секунд (при токе 1000 А время срабатывания равно 10 с).


Такой вид зависимости позволяет защищаемому оборудованию свободно работать во всем диапазоне рабочих перегрузочных характеристик. При дальнейшем увеличении тока, крутизна времятоковой характеристики (рис. 2.8) быстро возрастает, и уже при одиннадцатикратной перегрузке время срабатывания составляет всего 10 мс. Дальнейший рост тока перегрузки сокращает время срабатывания еще в большей степени, хотя и не так быстро, как на участке между пяти- и десятикратной перегрузке. Это объясняется конечной скоростью гашения дуги из-за конечной теплоемкости материала наполнителя, конечной теплоты плавления материала плавкой перемычки и определенной массы плавящегося и испаряющегося металла перемычки. При дальнейшем увеличении тока (более чем 15-20-кратно относительно номинального) время срабатывания плавкого элемента может составлять 0,02-0,5 мс в зависимости от типа и конструкции предохранителя.


Фирма Siemens выпускает широкую номенклатуру плавких предохранителей (комбинаций gG, gM, aM, gR, aR, gTr, gF, gFF), шести типоразмеров - 000(00С), 00, 1, 2, 3, 4а (обозначения согласно IEC) на номинальные токи от 2 до 1600 А и напряжения (~ 400В, 500В и 690В; - 250В, 440В) с наиболее часто применяемыми на практике контактами ножевого типа (NH), преимущественно вертикального положения установки.


Предохранители типа NH обладают высокой отключающей способностью и стабильностью характеристик. Применение предохранителей типа NH позволяет обеспечивать селективность защиты при КЗ.


Плавкие предохранители ножевого типа NH (аналог ППН), предназначены для установки в контактодержатели PBS, PBD, в ПВР серии АРС и RBK, а также в выключатели нагрузки типа RAB. Возможно применение данных предохранителей в защитных аппаратах, рассчитанных на применение отечественных вставок типа ППН.


Предохранители типа NH представляют собой предохранитель с гашением дуги в закрытом объеме. Плавкая вставка штампуется из цинка, являющегося легкоплавким и стойким к коррозии металлом. Форма плавкой вставки позволяет получить благоприятную времятоковую (защитную) характеристику. Вставка располагается в герметичном изоляционном керамическом корпусе. Наполнитель - кварцевый песок с содержанием SiO не менее 98 %, с зернами (0,2-0,4)⋅10 -3 м и влажностью не выше 3 %.


При отключении сгорают суженные перешейки плавкой вставки, после чего возникшая дуга гасится благодаря эффекту токоограничения, возникшему при перегорании суженных участков плавкой вставки. Среднее время гашения дуги составляет 0,004 с.


Времятоковые характеристики предохранителей типа NH для класса использования gG приведены на рисунке 2.9.



2 10 100 1 000 10 000 100 000


Ожидаемый ток КЗ IP, А


Рис. 2.9.


Предохранители типа NH работают бесшумно, практически без выброса пламени и газов, что позволяет устанавливать их на близком расстоянии друг от друга.


Еще одной важной характеристикой предохранителя, как защитного устройства, является так называемый защитный показатель, в зарубежных источниках именуемый I 2 ⋅t. Для защищаемой электрической цепи защитный показатель - это количество тепла, выделяемого в цепи с момента возникновения аварийной ситуации до момента полного отключения цепи защитным устройством. Величина защитного показателя конкретного устройства, по сути, определяет предел его устойчивости к тепловому разрушению в аварийных режимах. При вычислении величины защитного показателя используется эффективное значение тока в цепи.


Например, эффективное значение тока, протекающего через предохранитель, можно рассчитать для часто используемых схем выпрямителей переменного тока, исходя из (сглаженного) постоянного тока Id либо из фазного тока IL, значения которых приведены таблице 2.2.


При коротком замыкании ток предохранительной вставки (рис. 2.10) возрастает в течение времени плавления tS до тока короткого замыкания IC (пика тока плавления).


Таблица 2.2 Эффективное значение тока, протекающего через предохранитель

Схема выпрямителя переменного тока

Эффективное значение фазного тока (фазный предохранитель)

Эффективное значение тока от­ветвления (пре­дохранитель в ответвлении)

Однопульсная со средней точкой

Двухпульсная со средней точкой

Трехпульсная со средней точкой

Шестипульсная со средней точкой

Двойная трехфазная однополупериодная

со средней точкой (параллельная)

Двухпульсная мостовая схема

Шестипульсная мостовая схема

Однофазная двунаправленная схема

В течение времени гашения дуги tL образуется электрическая дуга и ток короткого замыкания гасится (рис. 2.10).


Интеграл квадратичного значения тока (∫l 2 dt) no всему времени срабатывания (tS + tL), кратко называемый полным джоулевым интегралом, определяет тепло, которое подводится к подлежащему защите полупроводниковому элементу во время процесса размыкания.


Чтобы достичь достаточного защитного эффекта, полный джоулев интеграл предохранительной вставки должен быть меньше чем величина I 2 ⋅t (интеграл предельной нагрузки) полупроводникового элемента. Так как полный джоулев интеграл предохранительной вставки с возрастающей температурой, а, следовательно, и с возрастающей предварительной нагрузкой, практически убывает так же, как и величина I 2 ⋅t полупроводникового элемента, то достаточно сравнить между собой величины I 2 ⋅t в ненагруженном (холодном) состоянии.



Рис. 2.10.


Полный джоулев интеграл (I 2 ⋅tA) представляет собой сумму интеграла плавления (I 2 ⋅tS) и интеграла дуги (I 2 ⋅tL). В общем случае, величина полного джоулевого интеграла полупроводникового прибора должна быть больше или равной величине защитного показателя предохранителя:


((∫I 2 t) (полупроводник, t = 25 °С, tP = 10 мс) ≥ ((∫I 2 ⋅tA) (предохранительная вставка).


Интеграл плавления I 2 ⋅tS может быть рассчитан для любых значений времени, исходя из пар значений времятоковой характеристики предохранительной вставки.


При уменьшении времени плавления интеграл плавления стремится к нижнему предельному значению, при котором во время процесса плавления из перемычек плавящегося проводника в окружающее пространство тепло практически не отводится. Указанные в данных для выбора и заказа и в характеристиках интегралы плавления соответствуют времени плавления tS = 1 мс. 


В то время как интеграл плавления I 2 ⋅tS является свойством предохранительной вставки, интеграл дуги I 2 ⋅tL зависит от характеристик электрической цепи, а именно:


От восстанавливающегося напряжения UW;


От коэффициента мощности cosф короткозамкнутой цепи;


От ожидаемого тока IP// (ток в месте установки предохранительной вставки, если она закорочена).


Максимум интеграла дуги достигается для каждого типа предохранителей при токе от 10⋅IР до 30⋅IР.


При защите сетей предохранителями типов ПН, НПН и НПР с заданными защитными характеристиками селективность действия защиты будет выполняться, если между номинальным током плавкой вставки, защищающей головной участок сети (Iном Г, ПВ), и номинальным током плавкой вставки на ответвлении к потребителю (Iном О, ПВ) выдерживаются определенные соотношения.


Например, при небольших токах перегрузки плавкой вставки (около 180-250 %) селективность будет выдерживаться, если Iном Г, ПВ > Iном О, ПВ хотя бы на одну ступень стандартной шкалы номинальных токов плавких вставок.


При коротком замыкании селективность защиты предохранителями типа НПН будет обеспечиваться, если будут выдерживаться следующие соотношения:


I(3)КЗ / Iном О, ПВ ≤ …50; 100; 200;


Iном Г, ПВ / Iном О, ПВ …2,0; 2,5; 3,3,


где I(3)КЗ - трехфазный ток короткого замыкания ответвления, А.


Соотношения между номинальными токами плавких вставок Iном Г, ПВ и Iном О, ПВ для предохранителей типа ПН2, обеспечивающие надежную селективность, приведены в таблице 2.3.


Если защитные характеристики плавких вставок неизвестны, рекомендуется метод проверки селективности по отношению сечений вставок с поправкой на материал вставки и конструкцию предохранителя. При этом определяются сечения плавких вставок последовательно включенных предохранителей (SK и SH); вычисляется отношение SП/SK и сравнивается с величиной SП/SK = а, обеспечивающей селективность.



SK - сечение вставки предохранителя, установленного ближе к месту короткого замыкания; SП - сечение вставки предохранителя, установленного ближе к источнику питания. 


Величина а определяется по таблице 2.4, если вычисленное значение Sn/SK ≥ а, то селективность обеспечивается.


Основным условием, определяющим выбор плавких предохранителей для защиты асинхронных двигателей с короткозамкнутым ротором, является отстройка от пускового тока.


Таблица 2.3 Номинальные токи последовательно включенных плавких вставок предохранителей ПН2, обеспечивающих надежную селективность

Номинальный ток меньшей плавкой вставки Iном О, ПВ А

Номинальный ток большей плавкой вставки Iном Г, ПВ, А, при отношении I(3)КЗ / Iном О, ПВ

100 и более


Примечание. 1(3)КЗ - ток короткого замыкания в начале защищаемого участка сети.

Отстройка плавких вставок от пусковых токов выполняется по времени: пуск электродвигателя должен полностью закончиться раньше, чем вставка расплавится под действием пускового тока.


Опытом эксплуатации установлено правило: для надежной работы вставок пусковой ток не должен превышать половины тока, который может расплавить вставку за время пуска.


Все электродвигатели разбиты на две группы по времени и частоте пуска. Двигателями с легким пуском считаются двигатели вентиляторов, насосов, металлорежущих станков и т. п., пуск которых заканчивается за 3-5 с, пускаются эти двигатели редко, менее 15 раз за 1 ч.


К двигателям с тяжелым пуском относятся двигатели подъемных кранов, центрифуг, шаровых мельниц, пуск которых продолжается более 10 с, а также двигатели, которые пускаются очень часто - более 15 раз за 1 ч. К этой категории относят и двигатели с более легкими условиями пуска, но особо ответственные, для которых совершенно недопустимо ложное перегорание вставки при пуске.


Таблица 2.4 Отношение сечений вставок Sn/SK, обеспечивающее селективность

Металл плавкой вставки

Металл плавкой вставки предохранителя,

предохранителя, расположенного

расположенного ближе к месту к. з.

ближе к источнику питания

Предохранитель с наполнителем

Предохранитель без наполнителя

Выбор номинального тока плавкой вставки для отстройки от пускового тока производится по выражению:


Iном,ПВ ≥ I пус,ДВ / К, (2.4)


где Iпус, ДВ - пусковой ток двигателя, определяемый по паспорту, каталогам или непосредственным измерением; К - коэффициент, определяемый условиями пуска и равный для двигателей с легким пуском 2,5, а для двигателей с тяжелым пуском 1,6-2.


Поскольку вставка при пуске двигателя нагревается и окисляется, уменьшается сечение вставки, ухудшается состояние контактов, она может ложно перегореть при нормальной работе двигателя. Вставка, выбранная в соответствии с (2.4), может сгореть также при


затянувшемся по сравнению с расчетным временем пуске или само- запуске двигателя.


Поэтому во всех случаях целесообразно измерить напряжение на вводах двигателя в момент пуска и определить время пуска.


Для предотвращения сгорания вставок при пуске, что может повлечь за собой работу двигателя на двух фазах и его повреждение, целесообразно во всех случаях, когда это допустимо по чувствительности к токам КЗ, выбирать вставки более грубые, чем по условию (2.1).


Каждый двигатель должен защищаться своим отдельным аппаратом защиты. Общий аппарат допускается для защиты нескольких маломощных двигателей только в том случае, если будет обеспечена термическая устойчивость пусковых аппаратов и аппаратов защиты от перегрузки, установленных в цепи каждого двигателя.

Выбор предохранителей для защиты магистралей, питающих несколько асинхронных электродвигателей


Защита магистралей, питающих несколько двигателей, должна обеспечивать и пуск двигателя с наибольшим пусковым током и самозапуск двигателей, если он допустим по условиям техники безопасности, технологического процесса и т. п.


При расчете защиты необходимо точно определить, какие двигатели отключаются при понижении или полном исчезновении напряжения, какие остаются включенными, какие повторно включаются при появлении напряжения.


Для уменьшения нарушений технологического процесса применяют специальные схемы включения удерживающего электромагнита пускателя, обеспечивающего немедленное включение в сеть двигателя при восстановлении напряжения. Поэтому в общем случае номинальный ток плавкой вставки, через которую питается несколько самозапускающихся двигателей, выбирается по выражению:


Iном, ПВ ≥ ∑Iпус, ДВ / К, (2.5)


где ∑Iпус, ДВ - сумма пусковых токов самозапускающихся электродвигателей.

Выбор предохранителей для защиты магистралей при отсутствии самозапускающихся электродвигателей


В этом случае плавкие вставки предохранителей выбираются по следующему соотношению:


Iном, ПВ ≥ Imax, ТЛ / К, (2.6)


где Imax, ТЛ = Iпус, ДВ + Iдлит, ТЛ - максимальный кратковременный ток линии; Iпус, ДВ - пусковой ток электродвигателя или группы одновременно включаемых электродвигателей, при пуске которых кратковременный ток линии достигает наибольшего значения; Iдлит, ТЛ - длительный расчетный ток линии до момента пуска электродвигателя (или группы электродвигателей) - это суммарный ток, который потребляется всеми элементами, подключенными через плавкий предохранитель, определяемый без учета рабочего тока пускаемого электродвигателя (или группы двигателей).

Выбор предохранителей для защиты асинхронных электродвигателей от перегрузки

Поскольку пусковой ток в 5-7 раз превышает номинальный ток двигателя, плавкая вставка, выбранная по выражению (2.4), будет иметь номинальный ток в 2-3 раза больше номинального тока двигателя и, выдерживая этот ток неограниченное время, не может защитить двигатель от перегрузки. Для защиты двигателей от перегрузки обычно применяют тепловые реле, встраиваемые в магнитные пускатели или в автоматические выключатели.


Если для защиты двигателя от перегрузки и управления им применяется магнитный пускатель, то при выборе плавких вставок приходится учитывать также условие предотвращения повреждения контактов пускателя.


Дело в том, что при коротких замыканиях в двигателе снижается напряжение на удерживающем электромагните пускателя, он отпадает и разрывает ток короткого замыкания своими контактами, которые, как правило, разрушаются. Для предотвращения этого короткого замыкания двигатели должны отключаться предохранителем раньше, чем разомкнутся контакты пускателя.


Это условие обеспечивается, если время отключения тока короткого замыкания предохранителем не превышает 0,15-0,2 с; для этого ток короткого замыкания должен быть в 10-15 раз больше номинального тока вставки предохранителя, защищающего электродвигатель, т. е.:


I(3)КЗ / Iном,ПВ ≥ 10–15. (2.7)

Защита предохранителями сетей до 1000 В от перегрузки


В ПУЭ 3.1.10 указаны сети напряжением до 1000 В, требующие, кроме защиты от коротких замыканий, защиты от перегрузки. К ним относятся:


1. Все сети, выполненные проложенными открыто незащищенными изолированными проводами с горючей оболочкой, внутри любых помещений.


2. Все осветительные сети независимо от конструкции и способа прокладки проводов или кабелей в жилых и общественных зданиях, в торговых помещениях, в служебно-бытовых помещениях промышленных предприятий, в пожароопасных производственных помещениях, все сети для питания бытовых и переносных электроприборов.


3. Все силовые сети в промышленных предприятиях, в жилых и общественных помещениях, если по условиям технологического процесса может возникнуть длительная перегрузка проводов и кабелей.


4. Все сети всех видов во взрывоопасных помещениях и взрывоопасных наружных (вне зданий) установках независимо от режима работы и назначения сети.


Номинальный ток плавкой вставки должен выбираться минимально возможным по условию надежного пропускания максимального тока нагрузки. Практически при постоянной, без толчков, нагрузке номинальный ток вставки 1ном, ПВ принимается примерно равным максимальному длительному току нагрузки Imax, ТН, а именно:


Iном, ПВ ≥ Imax, ТН. (2.8)


По номинальному току вставки определяется допустимый ток длительной нагрузки 1длит,ТН для проводника (проложенного в нормальных условиях), защищаемого выбранной вставкой:


kк⋅Iном, ПВ ≤ kп⋅Iдлит, ТН, (2.9)


где kк - коэффициент, который учитывает конструкцию защищаемых вставкой проводников, равный по ПУЭ 3.1.10 - 1,25 для проводников с резиновой и подобной горючей изоляцией, прокладываемых во всех помещениях, кроме невзрывоопасных производственных. Для любых проводников, прокладываемых в невзрывоопасных производственных помещениях, и кабелей с бумажной изоляцией в любых помещениях, kк = 1:


kп = kп1⋅kп2⋅kп3, (2-10)


где kп - общий поправочный коэффициент, соответствующий случаю, когда действительные условия прокладки отличаются от нормальных.


Если нагрузка имеет характер толчков, например, электродвигатель крана, и продолжительность нагрузки меньше 10 мин, то вводится поправочный коэффициент kп1. Этот коэффициент вводится для медных проводников сечением не менее 6 мм2 и алюминиевых не менее 10 мм2. Величина kп1 принимается по выражению


kп1 = 0,875/ √ПВ,


где ПВ - выраженная в относительных единицах продолжительность включения, равная отношению времени включения приемника, например электродвигателя, к полному времени цикла повторно кратковременного режима. Коэффициент кП1 вводится, если продолжительность включения не более 4 мин, а перерыв между включениями не менее 6 мин. В противном случае величина тока нагрузки принимается как для длительного режима.


Если температура окружающей среды отличается от нормальной, вводится поправочный коэффициент кП2, определяемый по таблицам ПУЭ.


При прокладке в одной траншее более одного кабеля вводится поправочный коэффициент кП3, определяемый также по таблицам ПУЭ.


В цепях вторичной коммутации (оперативного тока, контрольно-измерительных приборов, измерительных трансформаторов напряжения и др.) плавкие вставки выбирают по токам короткого замыкания исходя из условия:


I(3)КЗ / Iном,ПВ ≥ 10 (2.11)


Монтаж предохранителей производят на распределительных щитах и силовых пунктах. Плавкая вставка выполняется вертикально. После затяжки всех креплений проверяется соприкосновение контактов ножа или колпачка патрона и губками стоек. «Отпружинивание» контактных губок стоек при входе в них ножа или колпачка патрона должно быть заметно на глаз. Патроны предохранителей не должны выпадать из контактных стоек при приложении к ним усилия, равного для предохранителей, рассчитанных на ток: 40А - усилие 30Н; 100А - 40Н; 250А - 45Н; 400А - 50Н; 600А - 60Н.


Проверка предохранителей при новом включении проводится в следующем объеме:


1. Внешний осмотр, чистка, проверка контактных соединений.


2. Проверка правильности выбора номинального тока плавкой вставки.


В производственных условиях возникают причины, когда необходимо при отсутствии стандартной плавкой вставки заменять ее проводником, который по своим свойствам будет эквивалентен плавкой вставке.


В таблице 2.5 указаны сечения различных проводниковых материалов, пригодных для использования в качестве плавкой вставки предохранителя.

Выбор предохранителей для защиты полупроводниковых элементов


Предохранители для защиты полупроводниковых элементов вставки выбираются по расчетному напряжению, расчетному току, полному джоулевому интегралу I2⋅tA и коэффициенту нагрузочных циклов с учетом прочих заданных условий.


Расчетное напряжение Uр предохранительной вставки - это напряжение, приводимое в качестве эффективного значения переменного напряжения при формировании данных для заказа и проектирования, а также указываемое на самой предохранительной вставке.


Расчетное напряжение предохранительной вставки выбирается таким образом, чтобы она надежно отключала напряжение, возбуждающее короткое замыкание. Это напряжение не должно превышать значение Uр +10 %. При этом необходимо учитывать также тот факт, что напряжение питающей сети Uпc выпрямителя переменного тока может увеличиваться на 10 %. Если в короткозамкнутой цепи два ответвления схемы выпрямителя переменного тока расположены последовательно, то при достаточно большом токе короткого замыкания можно рассчитывать на равномерное распределение напряжения.


Таблица 2.5 Значение сечения проволоки для плавкой вставки предохранителя в зависимости от тока нагрузки

Величина тока, А

Свинец, мм2

Сплав, мм2: 75 % - свинец, 25 % - олово

Железо, мм2

Режим выпрямления . Для выпрямителей переменного тока, которые работают только в режиме выпрямления, в качестве возбуждающего напряжения выступает напряжение питающей сети Uпc.


Режим инвертирования . Для выпрямителей переменного тока, которые работают также и в режиме инвертирования, нарушение может быть вызвано опрокидыванием инвертора. При этом в качестве возбуждающего напряжения Uвн в короткозамкнутой цепи выступает сумма из питающего постоянного напряжения (например, электродвижущая сила машины постоянного тока) и напряжения трехфазного тока питающей сети. Эта сумма при подборе предохранительной вставки может быть заменена переменным напряжением, эффективное значение которого соответствует 1,8-кратному значению напряжения трехфазного тока питающей сети (Uвн=1,8Uпc). Предохранительные вставки должны рассчитываться таким образом, чтобы они надежно размыкали напряжение Uвн.


Расчетный ток, нагрузочная способность Iр предохранительной вставки - это ток, приводимый в данных для выбора и заказа, и характеристиках, а также указываемый на предохранительной вставке в качестве эффективного значения переменного тока для диапазона частот 45-62 Гц.


Для работы предохранительной вставки с расчетным током нормальными условиями эксплуатации являются:


Естественное воздушное охлаждение при температуре окружающей среды +45°С;


Поперечные сечения присоединений равны контрольным поперечным сечениям, при работе в основаниях предохранителей NH и разъединителях;


Угол отсечки тока полупериода составляет 120°;


Постоянная нагрузка максимальна при расчетном токе.


Для условий эксплуатации, отличающихся от перечисленных выше, допустимый рабочий ток Ip предохранительной вставки определяется по следующей формуле:


Ip = ku ⋅ kq ⋅ kл ⋅ ki ⋅ kwl ⋅ Ip, (2.12)


где Ip - расчетный ток предохранительной вставки;


ku - поправочный коэффициент температуры окружающей среды;


kq - поправочный коэффициент поперечного сечения присоединения;


kл - поправочный коэффициент угла отсечки тока;


ki - поправочный коэффициент интенсивного воздушного охлаждения;


kwl - коэффициент нагрузочных циклов.


Коэффициент нагрузочных циклов kwl - это понижающий коэффициент, при помощи которого может быть определена не изменяющаяся с течением времени нагрузочная способность предохранительных вставок при любых нагрузочных циклах. Предохранительные вставки имеют различные коэффициенты нагрузочных циклов, обусловленные конструкцией. В характеристиках предохранительных вставок указывается соответствующий коэффициент нагрузочных циклов kwl для > 10 000 изменений нагрузки (1 час «Вкл», 1 час «Откл») в течение ожидаемого срока службы предохранительных вставок.


При равномерной нагрузке (отсутствуют нагрузочные циклы и отключения) можно принять коэффициент нагрузочных циклов kwl = 1. При нагрузочных циклах и отключениях, которые длятся более, чем 5 мин и осуществляются чаще чем один раз в неделю, следует выбирать коэффициент нагрузочных циклов kwl, указанный в характеристиках отдельных предохранительных вставок фирм производителей.


Остаточный коэффициент - krw.


Предварительная нагрузка предохранительной вставки сокращает продолжительность допустимой перегрузки и времени плавления. При помощи остаточного коэффициента krw можно определить время, на протяжении которого предохранительная вставка при периодическом или непериодическом нагрузочном цикле сверх предварительно рассчитанного допустимого тока нагрузки Ip может работать с любым током перегрузки Ila без потери первоначальных свойств с течением времени.


Остаточный коэффициент kRW зависит от предварительной нагрузки V= Ieff/Ip - (отношения эффективного значения тока Ieff, протекающего через предохранитель во время нагрузочного цикла, к допустимому току нагрузки Ip), а также от частоты перегрузок F. Графически указанная зависимость представляется двумя кривыми (рис. 2.11): kRW1 = f (V), при F = частые ударные токи / токи нагрузочного цикла > 1/ неделю; kRW2 = f (V), при F = редкие ударные токи / токи нагрузочного цикла

После определения графическим способом коэффициента kRW1 (kRW2) можно определить сокращенную продолжительность допустимой нагрузки tsc по выражению:


tsc = kRW1 (kRW2) ⋅ ts


Уменьшение времени плавления предохранительной вставки tsy при предварительной нагрузке определяется по вычисленному значению V при помощи заданной кривой kR3 = f (V) (рис. 2.11) по выражению:


tsy = kR3 ⋅ ts


Рис. 2.11.

Выпрямители переменного тока работают часто не с непрерывной, а с переменными нагрузками, которые могут также кратковременно превышать расчетный ток выпрямителя переменного тока.


Для случая переменной нагрузки классифицированы четыре типичных вида нагрузки для не изменяющегося с течением времени режима работы предохранительных вставок:


Неизвестная переменная нагрузка, однако с известным максимальным током (рис. 2.13);


Переменная нагрузка с известным нагрузочным циклом (рис. 2.14);


Случайная ударная нагрузка из предварительной нагрузки с неизвестной последовательностью ударных импульсов (рис. 2.15).


Определение требуемого расчетного тока IP предохранительной вставки для каждого из четырех видов нагрузки осуществляется в два этапа:


1. Определение расчетного тока IP на основе эффективного значения Ieff тока нагрузки:


IР > Ieff ⋅(1/ ku ⋅ kq ⋅ kл ⋅ ki ⋅ k). (2.13)


2. Проверка допустимой продолжительности перегрузки блоками тока, которые превышают допустимый рабочий ток предохранителя IP/, с использованием выражения:


kRW ⋅ ts ≥ tk, (2.14)


где tK - продолжительность перегрузки.


Если полученная продолжительность перегрузки окажется меньшей, чем соответствующая требуемая продолжительность перегрузки, то следует выбрать предохранительную вставку с более высоким расчетным током Ip (с учетом расчетного напряжения Up и допустимого полного джоулевого интеграла) и повторить проверку.


Пример выбора предохранителя

Плавкий предохранитель – это установочное изделие, предназначенное для защиты электроприборов путем отключения подачи на них электроэнергии при превышении допустимой величины тока способом расплавления установленной в предохранителе калиброванной проволоки.

Для защиты электрической проводки и дорогостоящей радиоаппаратуры от короткого замыкания, бросков тока в питающей сети и обеспечения безопасной эксплуатации электроприборов широко используются плавкие вставки – предохранители. Они выпускаются разных конструкций, типоразмеров и на любые токи защиты.

Рассмотренная технология ремонта предохранителей при соблюдении всех условий обеспечит его защитную функцию. Но не каждый имеет опыт работы с паяльником и измерения диаметра проволоки. Да и в любом случае предохранитель промышленного изготовления будет работать надежнее.

Квартирную электропроводку раньше тоже защищали исключительно с помощью плавких предохранителей, установленных в пробки. В настоящее время для защиты электропроводки применяются более надежные многоразовые приборы защиты от коротких замыканий – автоматические выключатели . В электроприборах же, более лучшей защиты от коротких замыканий, чем плавкий предохранитель пока ничего не придумали. Особенно актуально применение плавких предохранителей в автомобилях, так как они являются единственным надежным и дешевым средством защиты от короткого замыкания.

Условное графическое обозначение
плавкого предохранителя

Условное графическое обозначение плавкого предохранителя на схемах похоже на обозначения сопротивления, и отличается только тем, что через середину прямоугольника линия проходит не разрываясь. Рядом с условным обозначением обычно пишется и буквенное обозначение Пр. или F. Иногда на схемах просто пишут thermal fuse или fuse. После буквы часто указывают ток защиты предохранителя, например F 1 А, обозначает, что в схеме установлен предохранитель на ток защиты 1 ампер.

При эксплуатации предохранители выходят из строя, и их приходится заменять новыми. Считается, что предохранители ремонту не подлежат. Но если к делу ремонта подойти грамотно, то практически любой предохранитель можно с успехом отремонтировать и использовать повторно. Ведь корпус предохранителя остается целым, а перегорает только тонкая калиброванная проволока, размещенная внутри корпуса. Если перегоревшую проволоку заменить на такую же, то предохранитель сможет служить дальше.

Принцип работы предохранителя на видеоролике

При прохождении электрического тока меньше предельно допустимого, калиброванная проволока, соединяющая контакты предохранителя, нагревается до температуры около 70˚С. В случае превышения тока номинала предохранителя, проволока начинает нагреваться сильнее и при достижении температуры плавления металла, из которого она сделана – расплавляется, электрическая цепь разрывается, и течение тока прекращается.

Поэтому предохранитель и назвали плавким или плавкой вставкой. Видеоролик представлен в замедленном виде, для того, чтобы было хорошо видно, как происходит перегорание провода в предохранителе. В реальных условиях провод в предохранителе перегорает практически мгновенно.

Предохранитель защищает от превышения тока в цепи и, не имеет значения напряжение питающей сети, в которой он установлен, это может быть батарейка на 1,5 В, и автомобильный аккумулятор на 12 В или 24 В, сеть переменного напряжения 220 В, трехфазная сеть на 380 В. То есть Вы можете установить один и тот же предохранитель, например номиналом 1 А и в колодке предохранителей автомобиля, и в фонарике и в распределительном щите 380 В. Все типы плавких предохранителей отличаются только внешним видом и конструкцией, а работают по одному принципу – при превышении заданного тока в цепи, в предохранителе из-за нагрева расплавляется проволока.

Основных причин выхода из строя предохранителя две, из-за бросков питающего напряжения или поломки внутри самой радиоаппаратуры. Редко, но встречаются отказы предохранителя и по причине плохого его качества.

Многие думают, что предохранитель ремонту не подлежит. Но это не совсем так. В экстренной ситуации, когда под рукой нет запасного и, например, из-за отказавшегося работать авто в пути или усилителя, и срывается музыкальное сопровождение школьного бала или свадьбы, а все магазины уже закрыты, выбирать не приходится.

При грамотном подходе можно с успехом восстановить для временного использования до замены новым перегоревший предохранитель, сохранив его защитные функции. Зачастую такие проблемы решают банальным замыканием контактов держателя предохранителя любой попавшейся проволокой, а еще хуже, просто вставляют вместо предохранителя гвоздь или кусок толстой проволоки. Такое решение может окончательно все испортить и способствует возникновению пожара.

Типы плавких предохранителей

По назначению и конструкции плавкие предохранители бывают следующих типов:

  • Вилочные (в основном применяются для защиты электропроводки и приборов в автомобилях);
  • С слаботочными вставками для защиты электроприборов с током потребления до 6 ампер;
  • Пробковые (устанавливаются в щитках жилых домов, рассчитаны на ток защиты до 63 ампер);
  • Ножевые (применяются в промышленности для защиты сетей при токе потребления до 1250 ампер);
  • Газогенерирующие;
  • Кварцевые.

Рассмотренная в статье технология ремонта предназначена для восстановления вилочных, со слаботочными вставками, пробковых и ножевого типа предохранителей.

Трубчатые плавкие предохранители

Предохранитель трубчатой конструкции представляет собой стеклянную или керамическую трубочку, закрытую с торцов металлическими колпачками, которые соединены между собой проволокой калиброванной по диаметру, проходящей внутри трубочки. Внешний вид трубчатых плавких предохранителей Вы видите на фотографии.


К колпачкам проволока приваривается точечной сваркой или припаивается припоем. В предохранителях, рассчитанных на очень большие токи, часто полость внутри трубочки заполняют кварцевым песком.

Автомобильные плавкие предохранители

Предохранители в автомобилях выходят из строя очень редко. Обычно только в случаях, когда отказывает оборудование. Чаще всего при перегорании лампочек у фар . Дело в том, что когда обрывается нить накаливания у лампочки, образуется Вольтова дуга, нить при этом сгорает и становится короче, сопротивление резко уменьшается и величина тока многократно увеличивается.

Бывает, плавкий предохранитель в автомобиле сгорает и при заклинивании стеклоочистителей. Реже при коротких замыканиях в электропроводке. На фотографии Вы видите широко применяемые автомобильные плавкие предохранители ножевого (вилочного) типа. Под каждым предохранителем приведен ток его защиты в амперах.

Перегоревший предохранитель в авто положено заменять предохранителем такого же номинала, но можно его и отремонтировать, заменив перегоревший в предохранителе провод медным соответствующего диаметра. Напряжение бортовой сети автомобиля значения не имеет. Главное – соответствие тока защиты. Если трудно определить номинал сгоревшего авто предохранителя, то можно воспользоваться цветовой маркировкой.

Цветовая маркировка автомобильных предохранителей

Формула для расчета диаметра проволоки предохранителя
по мощности электроприбора

Мощность часто указывают на этикетках, приклеенных на изделиях. Если на изделии указана потребляемая мощность, то можно рассчитать номинальный ток предохранителя по ниже приведенной формуле.

где I nom – номинальный ток защиты предохранителя, А; P max – максимальная мощность нагрузки, Вт; U – напряжение питающей сети, В.

Но гораздо удобнее воспользоваться готовыми данными из таблиц. Обратите внимание, первая таблица служит для выбора номинала предохранителя изделий, питающихся от бытовой электросети 220 В, а вторая, для изделий, используемых в автомобилях с напряжением бортовой сети 12 В.

Таблица для выбора номинала предохранителя в зависимости от потребляемой мощности электроприбора при питающем напряжении 220 В

Рассмотрим на примере как выбирать предохранитель.
Телевизор перестал работать после грозы. Определено, что сгорел предохранитель. Номинал его не известен. На этикетке задней крышки написано, что потребляемая мощность составляет 120 Вт, бывает, что пишут и 120 ВА. Это обозначение одной и той же мощности, но по стандартам разных стран. По таблице получается, что для электроприборов с максимальной потребляемой мощностью 120 Вт (ближайшее значение 150 Вт) является предохранитель на 1 А.

Методика подбора предохранителя для защиты бортовой электропроводки автомобиля ничем не отличается от выбора для бытовой электропроводки 220 В.

Таблица для выбора номинала предохранителя в зависимости от потребляемой мощности электроприбора при питающем напряжении 12 В (бортовая сеть автомобиля)

Если после двух замен предохранители каждый раз перегорали, значит, поврежден электроприбор и требуется уже его ремонт. Попытка установить предохранитель на больший ток может только нанести еще дополнительный вред изделию вплоть до не ремонтопригодности.

Калькулятор для расчета тока предохранителя

Если в таблицах нет данных для Вашего случая, например, напряжение питания изделия составляет 24 В или 110 В, то можете самостоятельно с помощью приведенного ниже онлайн калькулятора выполнить расчет.

При расчете на калькуляторе Вы получите точное значение тока. Для надежной работы предохранителя необходимо, чтобы его номинал был не менее чем на 5% больше. Например, если получено расчетное значение тока 1 А, то нужно брать предохранитель большего ближайшего номинала из стандартного ряда, то есть 2 А.

Иногда попытки определить номинал предохранителя считыванием информации не получается. На электроприборе надписей нет, на предохранителе не читаемая маркировка. При наличии амперметра, и опыта работы с ним, то вынув предохранитель и подключив амперметр к контактам колодки, в котором был установлен предохранитель, можно измерять ток и тем самым определить его номинал.

Но тут есть подводный камень. Если предохранитель вышел из строя из-за неисправности электроприбора, то ток может быть на много больше, чем должен быть, в дополнение можно еще и вывести из строя измерительный прибор.

Расчет диаметра проволоки плавкого предохранителя

Для ремонта предохранителя необходимо заменить перегоревшую проволоку. При производстве предохранителей на заводах используют, в зависимости от величины тока и быстродействия, калиброванные серебряные, медные, алюминиевые, никелиновые, оловянные, свинцовые и проволоки из других металлов.

Для изготовления предохранителя в домашних условиях доступна только красная медь калиброванного диаметра. Все электропровода сделаны из меди, и чем эластичней провод, тем тоньше в нем проводники и большее их количество. Поэтому вся ниже предложенная технология ориентирована на применение медной проволоки.

При выборе предохранителя для аппаратуры разработчики пользуются простым законом. Ток предохранителя должен быть больше максимально потребляемым изделием. Например, если максимальный ток потребления усилителя составляет 5 ампер, то предохранитель выбирается на 10 ампер. Первое, что необходимо найти на корпусе предохранителя его маркировку, из которой можно узнать, на какой ток он рассчитан. Часто величину тока пишут на корпусе изделия, рядом с местом установки предохранителя. Затем из ниже приведенной таблицы определить какого диаметра нужен провод.

Таблицы для выбора диаметра проволоки
в зависимости от тока защиты предохранителя

Для ремонта предохранителей на ток защиты от 0.25 до 50 ампер

0,25 0.5 1.0 2.0 3.0 5.0 7.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0
Диаметр проволоки, мм Медной 0.02 0.03 0.05 0.09 0.11 0.16 0.20 0.25 0.33 0.40 0.46 0.52 0.58 0.63 0.68 0.73
Алюминиевой - - 0.07 0.10 0.14 0.19 0.25 0.30 0.40 0.48 0.56 0.64 0.70 0.77 0.83 0.89
Стальной - - 0.32 0.20 0.25 0.35 0.45 0.55 0.72 0.87 1.00 1.15 1.26 1.38 1.50 1.60
Оловянной - - 0.18 0.28 0.38 0.53 0.66 0.85 1.02 1.33 1.56 1.77 1.95 2.14 2.30 2.45

Для ремонта предохранителей на ток защиты от 60 до 300 Ампер

Ток защиты предохранителя, Ампер 60 70 80 90 100 120 160 180 200 225 250 275 300
Диаметр проволоки, мм Медной 0.83 0.91 1.00 1.08 1.16 1.31 1.59 1.72 1.84 1.99 2.14 2.28 2.41
Алюминиевой 1.00 1.10 1.22 1.32 1.42 1.60 1.94 2.10 2.25 2.45 2.60 2.80 2.95
Стальной 1.80 2.00 2.20 2.38 2.55 2.85 3.20 3.70 4.05 4.40 4.70 5.0 5.30
Оловянной 2.80 3.10 3.40 3.65 3.90 4.45 4.90 5.80 6.20 6.75 7.25 7.70 8.20

Формула для расчета диаметра медной проволоки
для предохранителя

Для определения более точных значений диаметра медной проволоки для ремонта предохранителя, или если требуется предохранитель на ток защиты, значения которого нет в таблице, можно воспользоваться ниже приведенной формулой.

где I пр – ток защиты предохранителя, А; d – диаметр медной проволоки, мм.

Как измерять диаметра проволоки

Диаметр тонкого провода лучше всего измерять микрометром . Если под рукой нет микрометра для измерения диаметра проволоки, то можно воспользоваться обыкновенной линейкой.

Нужно намотать 10-20 витков к витку проволоки на линейку, поделить количество закрытых миллиметров на количество намотанных витков. Получите диаметр. Например, у меня намотано 10 витков провода, и они закрыли 6,5 мм. Делим 6,5 на 10. Диаметр провода получается равным 0,65 мм. 0,05 мм занимает изоляция. Следовательно, реальный диаметр составляет 0,6 мм.

Такой провод подойдет для изготовления предохранителя на 30 А. Провод мотал толстый для большей наглядности. Чем больше намотаете витков на линейку, тем точнее будет результат измерений. Нужно наматывать не менее одного сантиметра. Если в наличии проволока малой длины, то намотайте ее на любой стержень, например, отвертку, зубочистку или карандаш, а линейкой измерьте ширину намотки.

Результаты измерений можете обработать с помощью онлайн калькулятора. Для определения диаметра провода достаточно в окошках ввести ширину намотки, количество витков и нажать «Рассчитать диаметр провода».

Ремонт плавкого предохранителя своими руками

Ремонт трубочного плавкого предохранителя

Первый самый простой. Проволока зачищается до блеска и наматывается на каждую чашку по несколько витков, затем предохранитель вставляется в держатель. Этот способ не надежен, и воспользоваться им можно, как временной мерой. Благодаря своей простоте он позволяет оперативно проверить исправность электроприбора. Если при включении проволока расплавилась, значить дело не в предохранителе, и требуется более квалифицированный ремонт.


Второй способ несколько сложней. Но тоже не требует применения пайки. Нужно прогреть по очереди чашки зажигалкой или на газовой плите и удерживая через ткань руками снять их со стеклянной трубки. Нагревать можно и паяльником. Внутри чашки для хорошего контакта нужно тщательно очистить от остатков клея.


Продеть зачищенную от изоляции проволоку через трубку по диагонали, загнуть ее концы вдоль трубки и надеть на место чашки. Плавкий предохранитель отремонтирован.

Третий способ по сути такой же, как и первых два. Но отремонтированный предохранитель практически не отличается от нового. Ремонт выполняется следующим образом.

Заводская калиброванная проволока при изготовлении предохранителя продевается в отверстия в торцах чашек и фиксируется припоем. Для того, чтобы вставить новую проволоку необходимо паяльником разогреть торцы чашек и зубочисткой или заточенной деревянной палочкой освободить отверстия в торцах чашек от припоя. Далее выполнить описанную выше заводскую операцию.


Бывает отверстия в чашках очень маленького диаметра и сложно их очистить от припоя. Тогда при наличии технической возможности проще просверлить отверстия сверлом диаметром 1-2 мм или расширить граненым шилом

Предложенная технология ремонта предохранителей и плавких вставок с успехом может быть применена для восстановления практически любых типов плавких предохранителей.

Ремонт автомобильного предохранителя ножевого типа

Технология ремонта автомобильного предохранителя ничем не отличается от технологии ремонта трубчатого, даже проще, так как нет необходимости заниматься его разборкой.

Сначала нужно наждачной бумагой или надфилем зачистить ножи предохранителя у его основания полоской в несколько миллиметров и залудить эти места припоем .

При залуживании столкнулся с тем, что при использовании спирто-канифольного флюса припой не хотел растекаться по поверхности ножей. Пришлось применить флюс «ФИМ», предназначенный для пайки меди, серебра, константана, платины и черных металлов. Основой флюса является ортофосфорная кислота. Я его всегда использую для пайки, если канифоль не подходит. Остатки флюса ФИМ удаляются промывкой водой.

Предохранитель был рассчитан на ток защиты 10 А, поэтому в соответствии с приведенной выше таблицей для ремонта был взят провод ⌀0,25 мм. Проводу была придана форма петли, как показано на фотографии, и концы его залужены припоем.

После всех подготовительных работ осталось только завести петлю провода внутрь корпуса предохранителя и припаять концы к ножкам.

Растекшийся припой можно срезать ножом, удалить с помощью наждачной бумаги или сточить надфилем.

Автомобильный предохранитель отремонтирован, и теперь его можно повторно использовать для защиты цепей в электропроводке автомобиля. Если после установки отремонтированного предохранителя он опять перегорел, то нужно искать неисправность в электрооборудовании автомобиля.

Как сделать индикатор перегорания предохранителя своими руками

В продаже есть автомобильные предохранители с индикатором их неисправности. В корпусе предохранителя вмонтирована миниатюрная лампочка накаливания или светодиод, начинающие светиться при перегорании предохранителя. Такой индикатор перегорания авто предохранителя можно собрать своими руками по ниже предложенной на фотографии электрической схеме.


Для этого достаточно подсоединить параллельно контактам предохранителя, любой светодиод VD1 через токоограничивающий резистор R1 или миниатюрную лампочку, рассчитанную на напряжение 12 В. Индикатор перегорания предохранителя можно смонтировать как в корпусе предохранителя, так и установить на колодке его держателя. Второй вариант предпочтительнее, так как при замене предохранителя индикатор останется на месте. Индикатор не будет светить при перегоревшем предохранителе, если не подключена нагрузка.

Приведенная на фотографии схема индикатора перегорания предохранителя или срабатывании автоматического выключателя с успехом может работать и в бытовой электросети при питающем напряжении 220 В.


Достаточно увеличить номинал резистора R1 до 300-500 кОм и для защиты светодиода VD1 от пробоя обратным напряжение дополнить схему диодом VD2 любого типа, рассчитанного на обратное напряжение не менее 300 В. Подойдет, например, широко применяемый отечественный диод КД109Б или импортный 1N4004.

Для сети переменного тока 220 В можно индикатор перегорания предохранителя или автоматического выключателя сделать на неоновой лампочке.