LED RGB подсветка - особенности, виды и характеристики. Как правильно подключить RGB светодиодную ленту к контроллеру

Мы не раз рассматривали разнообразные светодиоды, строение, использование и т.д. и т.п. Сегодня я хотел бы остановиться на одной из разновидностей светодиодов (если так можно говорить) - RGB светодиодах.

Что такое RGB светодиод и устройство


Соединение RGB диодов с ШИМ Altmega8

Аноды RGB светодиода подключаем к линиям 1,2,3 порта В, катоды соединяем с минусом. Чтобы получить разнообразные палитры цвета на аноды будем подавать ШИМ сигнал в определенной последовательности. В этом примере мы специально используем программный ШИМ, хотя на Atmega8 можно без проблем получить аппаратный ШИМ на 3 канала. Программный ШИМ можно использовать в случаях нехватки таймеров/счетчиков и по другим причинам. Для генерации ШИМ определенной частоты используем прерывание по переполнению 8-ми битного таймера Т0(TIMER0_OVF_vect). Так как предделитель не используем частота переполнения таймера будет равна 31250Гц. А если переменная "pwm_counter" считает до 163, то частота ШИМ будет равна 190 Hz. В обработчике прерываний исходя из значений в переменных pwm_r, pwm_g, pwm_b переключаются ножки порта В. Цветовые эффекты настраиваются с помощью функций, где задается время свечения светодиода. В тестовой программе сначала загораются красный, зеленый, синий, белый цвета, а потом начинается цикл с переходами цвета.

Программный код:

// Управление RGB светодиодом. Программный ШИМ

#include

#include

volatile char pwm_counter,pwm_r,pwm_g,pwm_b;

// Прерывание по переполнению Т0

ISR (TIMER0_OVF_vect)

if (pwm_counter++ > 163)

pwm_counter = 0;

if (pwm_counter > pwm_r) PORTB |= (1 << PB1);

if (pwm_counter > pwm_g) PORTB |= (1 << PB2);

if (pwm_counter > pwm_b) PORTB |= (1 << PB3);

// Процедура задержки в микросекундах

void delay_us(unsigned char time_us)

{ register unsigned char i;

for (i = 0; i < time_us; i++) // 4 цикла

{ asm (" PUSH R0 "); // 2 цикла

asm (" POP R0 "); // 2 цикла

// 8 циклов = 1 us для 8MHz

// Процедура задержки в миллисекундах

void delay_ms(unsigned int time_ms)

{ register unsigned int i;

for (i = 0; i < time_ms; i++)

{ delay_us(250);

// Красный цвет

void red (unsigned int time)

for (char a = 0; a < 165; a++)

pwm_r = 164 - a; //увеличение

for (char a = 0; a < 165; a++)

pwm_r = a; //уменьшение

// Зеленый цвет

void green (unsigned int time)

for (char a = 0; a < 165; a++)

pwm_g = 164 - a;

for (char a = 0; a < 165; a++)

// Синий цвет

void blue (unsigned int time)

for (char a = 0; a < 165; a++)

pwm_b = 164 - a;

for (char a = 0; a < 165; a++)

// Белый цвет

void white (unsigned int time)

for (char a = 0; a < 165; a++)

pwm_r = 164 - a;

pwm_g = 164 - a;

pwm_b = 164 - a;

for (char a = 0; a < 165; a++)

// Переход цветa

void rgb (unsigned int time)

for (char a = 0; a < 165; a++)

pwm_b = 164 - a;

for (char a = 0; a < 165; a++)

Многоцветные светодиоды, или как их еще называют RGB, используются для индикации и создания динамически изменяющейся по цвету подсветки. Фактически ничего особенного в них нет, давайте разберемся, как они работают и что такое RGB-светодиоды.

Внутреннее устройство

На самом деле RGB-светодиод - это три одноцветных кристалла совмещенные в одном корпусе. Название RGB расшифровывается, как Red - красный, Green - зеленый, Blue - синий соответственно цветам, которые излучает каждый из кристаллов.

Эти три цвета являются базовыми, и на их смешении формируется любой цвет, такая технология давно применяется в телевидении и фотографии. На картинке, что расположена выше, видно свечение каждого кристалла по отдельности.

На этой картинке вы видите принцип смешивания цветов, для получения всех оттенков.

Кристаллы в RGB-светодиоды могут быть соединены по схеме:

С общим анодом;

С общим катодом;

Не соединены.

В первых двух вариантах вы увидите, что у светодиода есть 4 вывода:

Или 6-тью выводами в последнем случае:

Вы можете видеть на фотографии под линзой четко видны три кристалла.

Для таких светодиодов продаются специальные монтажные площадки, на них даже указывают назначение выводов.

Нельзя оставить без внимания и RGBW - светодиоды, их отличие состоит в том, что в их корпусе есть еще один кристалл излучающий свет белого цвета.

Естественно не обошлось и без лент с такими светодиодами.

На этой картинке изображена лента с RGB-светодиодами , собранные по схеме с общим анодом, регулировка интенсивности свечения осуществляется путем управления «-» (минусом) источника питания.

Для изменения цвета RGB-ленты используются специальные RGB-контроллеры - устройства для коммутации напряжения подаваемого на ленту.

Вот цоколевка RGB SMD5050:

И ленты, особенностей работы с RGB-лентами нет, всё остается также как и с одноцветными моделями.

Для них есть и коннекторы для подсоединения светодиодной ленты без пайки.

Вот распиновка 5-ти мм РГБ-светодиода:

Как изменяется цвет свечения

Регулировка цвета осуществляется путем регулировки яркости излучения каждым из кристаллов. Мы уже рассматривали .

RGB-контроллер для ленты работает по такому же принципу, в нём стоит микропроцессор, который управляет минусовым выводом источника питания - подключает и отключает его от цепи соответствующего цвета. Обычно в комплекте с контроллером идёт пульт дистанционного управления. Контроллеры бывают разной мощности, от этого зависит их размер, начиная от такого миниатюрного.

Да такого мощного устройства в корпусе размером с блок питания.

Они подключаются к ленте по такой схеме:

Так как сечение дорожек на ленте не позволяет подключать последовательно с ней следующий отрезок ленты, если длина первого превышает 5м, нужно подключать второй отрезок проводами напрямую от РГБ-контроллера.

Но можно выйти из положения, и не тянуть дополнительных 4 провода на 5 метров от контроллера и использовать RGB-усилитель. Для его работы нужно протянуть всего 2 провода (плюс и минус 12В) или запитать еще один блок питания от ближайшего источника 220В, а также 4 «информационных» провода от предыдущего отрезка (R, G и B) они нужны для получения команд от контроллера, чтобы вся конструкция светилась одинаково.

А к усилителю уже подключают следующий отрезок, т.е. он использует сигнал с предыдущего куска ленты. То есть вы можете запитать ленту от усилителя, который будет расположен непосредственно возле неё, тем самым сэкономив деньги и время на прокладку проводов от первичного RGB-контроллера.

Регулируем RGB-led своими руками

Итак, есть два варианта для управления RGB-светодиодами:

Вот вариант схемы без использования ардуин и других микроконтроллеров, с помощью трёх драйверов CAT4101, способных выдавать ток до 1А.

Однако сейчас достаточно дешево стоят контроллеры и если нужно регулировать светодиодную ленту - то лучше приобрести готовый вариант. Схемы с ардуино гораздо проще, тем более вы можете написать скетч, с которым вы будете либо вручную задавать цвет, либо перебор цветов будет автоматическим в соответствии с заданным алгоритмом.

Заключение

RGB-светодиоды позволяют сделать интересные световые эффекты используются в дизайне интерьеров, как подсветка для бытовой техники, для эффекта расширения экрана телевизора. Особых отличий при работе с ними от обычных светодиодов - нет.

При подключении обычной монохромной ленты следует придерживаться трех основных правил:

  • подключение выполняется параллельно отрезками не более 5 метров
  • лента монтируется на алюминиевый профиль
  • блок питания выбирается всегда с запасом по мощности

Эти же правила полностью применимы и для многоцветной RGB ленты. Однако здесь есть некоторые особенности. Связаны они с использованием в схеме подключения RGB контроллера.

RGB контроллер

Кроме этого, обязательно запомните, что полноценную rgb подсветку можно изготовить на основании светодиодов SMD 5050. Именно в них реализована возможность менять цвета в одном источнике света.

Достигается это за счет того, что светодиод собран из трех кристаллов. Во всех остальных видах SMD 2835, SMD 3528 один светодиод может светить только одним цветом.

Из-за этого в подсветке могут возникать небольшие провалы освещенности, когда соседние светодиоды попросту не будут гореть и полоса света не будет выглядеть цельной и сплошной. Примеры и недостатки таких моделей можно посмотреть в статьях ” ” и ” ”.

RGB контроллер подключается после блока питания. С его помощью можно менять не только цвета, но и яркость освещения, разные режимы работы, интенсивность смены расцветки и т.д.

Для режима светомузыки, когда цвета бегают по разным сторонам и сменяют друг друга, потребуются специальные контроллеры. Называются они DMX.

Напрямую через контроллер можно подключать определенную длину светодиодной ленты. Максимум это 5 метров или 10 метров при параллельном подключении двух отрезков по пять.

А что делать, если разноцветная подсветка у вас более 10 метров? Для монохромного варианта все решается параллельным подключением отдельных кусков. Например, подключаете 3 участка по 5м каждый и имеете полноценную подсветку длиной 15м.

Для RGB ленты параллельно спаять и соединить 5-ти метровые участки можно, однако с непосредственным подключением к одному контроллеру имеются нюансы.

Схема подключения светодиодной ленты RGB длиной 5м или 10м

Для начала рассмотрим вариант, когда у вас общая длина светодиодной подсветки всего 5м или 10м, то есть две цельные ленты соединенные параллельно по 5м каждая. Что необходимо в этом случае?

  • блок питания, преобразующий 220В из сети в 12 или 24В необходимые для работы подсветки

  • RGB контроллер

Его в отличие от блока питания можно подбирать без запаса по мощности, что называется впритык. Главное правильно рассчитать мощность самой ленты.

Например, если 1м потребляет 14,4Вт (данные можно найти на упаковке или из таблиц, согласно разновидности светодиодов), то 10м будут соответственно “кушать” 144Вт. Именно на такую мощность и покупаете контроллер.

Как все это правильно подключить? Во-первых, 220В нужно подать на сам блок питания. Обычно слева на нем имеются две клеммы с маркировкой L(фаза), N(ноль) и заземление. Здесь полярность L и N соблюдать не обязательно.

  • Light с контактами BGR V+

Расшифровываются они как:
B (blue) – синий

G (green) – зеленый

R (red) – красный

V – общий плюс на светодиодной ленте. Непосредственно на ленте он может быть подписан как ”+12” или просто ”+”. Все остальные три контакта rgb являются минусовыми.

  • Power с контактами “+” и ”-”

В отличие от монохромной ленты у RGB варианта не два контакта, а четыре. А иногда и все пять!

Пятый отвечает за белый свет, так как нормального белого естественного освещения получить от сочетания rgb цветов не получится. Называются такие светодиодные ленты RGBW или RGBWW.

Поэтому заранее уточняйте, сколько контактов для пайки проводов имеет лента и покупайте соответствующий контроллер. Особенно это актуально при покупках через интернет магазины.

К контактам Power подается напряжение 12 или 24В от блока питания.

Ищите на блоке клеммы с надписью ”V+” и “V-“. Вместо “V-“ иногда пишут “COM”.

Если перепутаете порядок, подключите красный к зеленому или наоборот, ничего страшного не случится, просто будут путаться цвета на пульту управления.

Кстати, светодиодную ленту RGB в крайних случаях можно подключать и вовсе без контроллера, напрямую к блоку.

Для этого нужно скрутить все три провода rgb в один и подать на него минус, а на второй проводок плюс.

Правда в этом случае, ни о какой разноцветной подсветке и речи быть не может. Однако как один из вариантов освещения, при выходе из строя контроллера, рассматривать можно.

При правильном подключении RGB ленты по первому варианту, у вас должна быть последовательность: 1 Блок питания
2 Контроллер
3 Светодиодная лента RGB

RGB лента длиной 15-20 метров

Если нужно подключить 15, 20 метров или более, такой вариант только с одним контроллером уже не подойдет. Есть два выхода:

  • использовать два контроллера
  • использовать RGB усилитель

Первый вариант неудобен более высокими затратами. А во-вторых, у вас будет два пульта управления, каждый из которых отвечает за различные участки ленты. И как вы их синхронизируете, тот еще вопрос.

Поэтому лучший вариант, когда все управляется от одного контроллера и с одного пульта. Это можно легко реализовать при помощи rgb усилителя.

Из названия понятно, что его предназначение усиливать сигнал от контроллера. Правда некоторые заблуждаются, полагая, что он нужен для более яркого свечения ленты. И его именно с этой целью можно использовать даже для 5-ти метровых участков. Это не так.

Выбирается он по мощности не всей длины светодиодной ленты, а только того участка, который к нему и подключается, помимо первых 5 или 10 метров.

Схема подключения усилителя

У усилителя есть входные-input и выходные-output клеммы. На входе и выходе те же контакты, что и у контроллера – общий плюс и цвета.

Также присутствуют и клеммы подключения питания:

  • VDD или "+"
  • GND или "-"

Напряжение 12-24В можно подавать как от дополнительного блока, так и от общего, если позволяет его мощность.

Для подключения, общие концы предыдущего отрезка светодиодной ленты, заводите во входные клеммы усилителя.

После этого под винты VDD и GND заводите проводники питания от блока.

В итоге у вас должна получиться последовательность: 1 Блок питания
2 Контроллер
3 Светодиодная лента №1
4 Усилитель
5 Светодиодная лента №2

Собранная подсветка по такой схеме будет работать и управляться с одного пульта.

Если вам нужно подключить еще 5-10 метров ленты, в схему добавляется еще один усилитель, а возможно и дополнительный блок питания (зависит от мощности освещения).

Только имейте в виду, что параллелить напрямую между собой сами блоки питания нельзя. Делать это нужно через диодный мост. Поэтому они должны быть разделены между собой через отдельные участки лент.

Таким образом можно собрать разноцветную подсветку любой длины под ваши запросы. Главное найти место для размещения всего этого оборудования.

Когда места не хватает, вместо большого усилителя можно использовать микро модель.

Он напоминает из себя что-то типа переходника, и размер у него соответствующий. При этом со своей задачей усиления сигнала справляется хорошо.

Кроме этого, его можно использовать, если вам не хватает мощности вашего контролера. Например, мощность всей светодиодной ленты 110Вт, а контроллера всего 70Вт.

Чтобы не менять его, просто докупаете такой мини усилитель, последовательно соединяете два элемента и наслаждаетесь освещением.

Кстати, такого же миниатюрного размера может быть и сам контроллер.

Светящиеся только красным - R , зеленым - G , синим - B или белым - CW цветом, как правило, подключаются непосредственно к источнику постоянного тока напряжением 12 В или 24 В. R G B светодиодную ленту, как и монохромные, тоже можно подключить к блоку питания постоянного тока, соединив выводы R , G и B между собой.

Но в таком случае будет упущена возможность реализации цветовых эффектов освещения, ради которых лента и была создана. Поэтому при установке цветных светодиодных лент, в разрыв цепи между блоком питания и лентой обычно устанавливают электронный контроллер. Он позволяет в автоматическом режиме изменять цвет и яркость свечения ленты в динамическом режиме по заданной с пульта дистанционного управления программе.

На фотографии изображена электрическая схема подключения R G B светодиодной ленты к сети 220 В. Блок питания (адаптер) преобразует переменное напряжение 220 В в напряжение постоянного тока 12 В, которое по двум проводам с соблюдением полярности подается на R G B контроллер. К контроллеру посредством четырех проводов в соответствии с маркировкой подключается светодиодная лента. Для удобства монтажа и ремонта светодиодного освещения узлы между собой соединяются с помощью разъемов.

Электрическая схема LED R G B светодиода SMD-5050

Для подключения, а тем более ремонта R G B светодиодной ленты на профессиональном уровне, необходимо представлять, как она устроена, и знать электрическую схему и распиновку применяемых в лентах светодиодов. На фотографии ниже представлен фрагмент R G B светодиодной ленты с нанесенной схемой распайки кристаллов светодиодов.

Как видно на схеме, кристаллы в светодиоде электрически не связаны между собой. Три разноцветных кристалла в одном корпусе светодиода образуют триаду. Благодаря такой конструкции, управляя яркостью свечения каждого кристалла индивидуально можно получить бесконечное количество цветов свечения светодиода. На таком принципе управления цветом построены дисплеи сотовых телефонов, навигаторов, фотоаппаратов, компьютерных мониторов, телевизоров и многих других изделий.

Технические характеристики светодиода SMD-5050 приведены на странице сайта «Справочник по SMD светодиодам» .

Электрическая схема LED R G B ленты на светодиодах SMD-5050

Разобравшись с устройством светодиода легко разобраться и с устройством светодиодной ленты. В верхней части картинки фотография работоспособного отрезка LED R G B ленты, а в нижней его электрическая схема.


Как видно из схемы, одноименные контактные площадки светодиодной ленты, находящиеся с ее правой и левой стороны электрически соединены между собой напрямую. Таким образом, обеспечивается возможность подачи питающего напряжения на ленту с любого конца и на следующий отрезок ленты при ее наращивании.

Кристаллы светодиодов VD1, VD2 и VD3 одинакового цвета свечения соединены последовательно. Для ограничения тока в каждой из цветовых цепей установлены токоограничивающие резисторы. Два из них номиналом 150 Ом, а один 300 Ом, в цепи кристаллов красного цвета. Резистор большего номинала установлен для выравнивания яркости всех цветов с учетом интенсивности излучения кристаллом светодиода и не одинаковой цветовой чувствительности человеческого глаза к разным цветам.

Как разрезать светодиодную ленту на отрезки

Как Вы уже наверно поняли, R G B светодиодная лента любой длины (относиться и к монохромным лентам), состоит из коротких самостоятельных отрезков, представляющих собой законченное изделие. Достаточно подать на контактные площадки напряжение питания и лента будет излучать свет. Для получения отрезка ленты требуемой длины элементарные отрезки соединяют между собой в соответствии с буквенной маркировкой.

Обычно лента выпускается длиной пять метров. В случае необходимости ее можно укоротить, разрезав поперек по линии, нанесенной по центру контактных площадок между маркировкой, бывает, в этом месте дополнительно наносят символическое изображение ножниц. Иногда ленту приходится разрезать, чтобы установить под углом. В таком случае разрезанные одноименные контактные площадки соединяются между собой с помощью пайки отрезками провода .

Способы управления цветом свечения
R G B светодиодных лент

Есть два способа управления цветовым режимом работы R G B светодиодной ленты, с помощью трех выключателей или электронного устройства.

Принцип работы простейшего контроллера на выключателях

Рассмотрим принцип работы самого простого контроллера, на механических выключателях. В качестве выключателя для ручного управления свечением R G B ленты можно применить трех клавишный настенный выключатель, предназначенный для включения люстр и светильников в бытовую сеть 220 В. Электрическая схема подключения тогда будет иметь следующий вид.


Резисторы R1-R3 служат для ограничения тока и их можно устанавливать в любом месте цепи питания кристаллов одного цвета. По этой схеме можно подключать R G B ленты, рассчитанные на напряжение питания как 12 В, так и 24 В.

Как видно из схемы, плюсовой вывод блока питания подключается непосредственно к плюсовому выводу светодиодной ленты, который является общий для светодиодов всех цветов, а минусовой вывод подключается к R , G и B контактам ленты через выключатель. Коммутатором из трех выключателей можно получить семь цветов свечения ленты. Это самый простой, надежный и дешевый способ управления цветами свечения R G B ленты.

Принцип работы электронного контроллера

Для получения бесконечного количества цветов свечения R G B ленты и в автоматическом режиме динамическое изменение величины светового потока, вместо выключателей используют электрический блок, который называется R G B контроллер. Его включают в разрыв цепи между блоком питания и R G B лентой. Обычно в комплект контроллера входит пульт дистанционного управления, позволяющий на расстоянии управлять режимом его работы, и как следствие режимом свечения светодиодной ленты.

Так как для работы светодиодной ленты требуется, как правило, напряжение постоянного тока 12 В (реже 24 В), то для подключения ее к электросети переменного тока 220 В применяется блок питания или адаптер, преобразующий переменное напряжение в напряжение постоянного тока, которое через разъемное соединение подается на блок контроллера.


Рассмотрим принцип работы RGB контроллера на примере самого простого и широко применяемого контроллера модели LN-IR24. Он состоит из трех функциональных узлов – контроллера управления R G B , силовых ключей и микросхемы инфракрасного сенсора (ИК). Микросхема контроллера прошита на требуемый алгоритм работы светодиодной ленты. Управление микросхемой контроллера осуществляется сигналом, поступающим с микросхемы сенсора ИК. На ИК сенсор управляющий сигнал поступает при нажатии кнопок на пульте дистанционного управления.

Управление подачей питающего напряжения на светодиодную ленту осуществляется с помощью трех полевых транзисторов, работающих в ключевом режиме. При поступлении сигнала с микросхемы контроллера управления RGB на затвор транзистора, его переход сток-исток открывается, и через светодиоды начинает протекать ток, в результате чего они начинают излучать свет. Управление яркостью свечения светодиодов осуществляется за счет высокочастотного изменения ширины импульсов подаваемого питающего напряжения (широтно-импульсной модуляции).

Выбор блока питания и контроллера для R G B ленты

Блок питания для RGB светодиодной ленты, необходимо выбирать, исходя из напряжения ее питания и потребляемого тока. Наиболее популярны светодиодные ленты на напряжение постоянного тока 12 В. Ток потребления по цепям R, G и B можно узнать из этикетки или определить самостоятельно, воспользовавшись справочными данными на светодиоды, изложенными в таблице на странице сайта Справочная таблица параметров популярных SMD светодиодов . Принято мощность потребления ленты указывать на метр ее длины.

Рассмотрим на примере как определить мощность потребления RGB ленты неизвестного типа на напряжение питания 12 В. Например, нужно подобрать блок питания и контроллер для R G B ленты длиной 5 м. Первое что необходимо сделать, определить тип RGB светодиодов установленных на ленте. Для этого достаточно измерять размер боковых сторон светодиода. Допустим, получилось 5 мм×5 мм. По таблице определяем, что такой размер имеет светодиод типа LED-RGB-SMD5050. Далее нужно подсчитать количество корпусов светодиодов на метре длины. Допустим, получилось 30 штук.

Один кристалл светодиода потребляет ток 0,02 А, в одном корпусе размещено три кристалла, следовательно суммарный ток потребления одного светодиода составит 0,06 А. На одном метре длины 30 светодиодов, умножаем ток на количество 0,06 А×30=1,8 А. Но диоды включены по три последовательно, значит, реальный ток потребления метра ленты будет в три раза меньше, то есть 0,6 А. Длина нашей ленты пять метров, следовательно, суммарный ток потребления составит 0,6 А×5 м=3 А.

Расчеты показали, что для питания R G B ленты длиной пять метров нужен блок питания или сетевой адаптер с выходным напряжением постоянного тока 12 В и током нагрузки не менее 3 А. Блок питания должен иметь запас по току, поэтому был выбран, адаптер модели АРО12-5075UV, рассчитанный на ток нагрузки до 5 А. При выборе блока питания нужно учесть, что выходной его разъем должен подходить к разъему R G B контроллера.

При выборе контроллера надо учесть, что ток потребления по отдельно взятому каналу R , G или B будет в три раза меньше. Следовательно, для нашего случая нужно брать контроллер, рассчитанный на напряжение 12 В и максимально допустимым током нагрузки на канал не менее 3 А/3=1 А.

Этим требованиям соответствует, например, R G B контроллер LN-IR24B. Он рассчитан на ток нагрузки до 2 А (можно подключить до 10 метров RGB ленты). Позволяет включать и выключать ленту, выбирать 16 статических цветов и 6 динамических режимов дистанционно, с расстояния до восьми метров, с помощью элегантного пульта ДУ. Питающее напряжение на контроллер подается с блока питания или сетевого адаптера с помощью коаксиального DC Jack. R G B -контроллер LN-IR24B имеет малый вес и габаритные размеры.


Внешний вид подготовленного по результатам расчета комплекта для освещения светодиодной лентой показан на фотографии. В комплект входит блок питания модели АРО12-5075UV, R G B контроллер LN-IR24B с пультом дистанционного управления и R G B светодиодная лента.


Если потребуется подключить несколько пятиметровых R G B лент, то потребуется более мощный контроллер, например, CT305R, позволяющий выдавать ток до 5 А на светодиоды одного цвета. Этим контроллером можно управлять не только с помощью пульта дистанционного управления, но и по сети с компьютера, превратив тем самым R G B освещение в цветомузыкальное сопровождение при прослушивании музыки.

Соединять последовательно светодиодные ленты длиной более пяти метров недопустимо, так как токоведущие дорожки самой ленты имеют малое сечение. Такое подключение приведет к снижению светового потока на участке ленты, превышающего длину пять метров. Если нужно подключить несколько пятиметровых светодиодных лент, то проводники каждой из них подключаются непосредственно к контроллеру.

В мощных моделях контроллеров для подключения внешних устройств используются клеммные колодки, в которых провода зажимаются с помощью винта. Рядом с клеммами обязательно нанесена маркировка. INPUT (IN) означает вход, к этим клеммам подключается внешний блок питания, с которого подается питающее напряжение для самого контроллера и светодиодных лент. Полярность обозначена дополнительными знаками «+» и «-». Несоблюдение полярности при подключении блока питания может вывести контроллер из строя.

Группа клемм для подключения R G B ленты обозначена надписью OUTPUT (OUT) и означает выход. Цвета обозначены буквами R (красный), G (зеленый), B (синий) и V+ (это общий провод любого другого цвета). От ленты обычно идут тоже цветные провода и достаточно просто присоединить их цвет в цвет.

Замечу, что к любому R G B контроллеру, соответствующему по току, можно с успехом подключить монохромную светодиодную ленту . Тогда появится возможность с помощью пульта дистанционного управления менять режим ее свечения – включать, выключать, менять яркость, устанавливать динамический режим изменения яркости.

В данной статье мы расскажем о цветных светодиодах, отличии простого RGB-светодиода от адресуемого, дополним информацией о сферах применения, о том, как они работают, каким образом осуществляется управление со схематическими картинками подключения светодиодов.

1. Вводная информация о светодиодах

Светодиоды – электронный компонент, способный излучать свет. Сегодня они массово применяются в различной электронной технике: в фонариках, компьютерах, бытовой технике, машинах, телефонах и т.д. Многие проекты с микроконтроллерами так или иначе используют светодиоды.

Основных назначений у них два :

Демонстрация работы оборудования или оповещение о каком-либо событии;
применение в декоративных целях (подсветка и визуализация).

Внутри светодиод состоит из красного (red), зеленого (green) и синего (blue) кристаллов, собранных в одном корпусе. Отсюда такое название – RGB (рис.1).

2. С помощью микроконтроллеров

С помощью него можно получить множество различных оттенков света. Управление RGB-светодиодом осуществляется с помощью микроконтроллера (MK), например, Arduino (рис.2).

Конечно, можно обойтись простым блоком питания на 5 вольт, резисторами в 100-200 Ом для ограничения тока и тремя переключателями, но тогда управлять свечением и цветом придется вручную. В таком случае добиться желаемого оттенка света не получится (рис.3-4).

Проблема появляется тогда, когда нужно подсоединить к микроконтроллеру сотню цветных светодиодов. Количество выводов у контроллера ограничено, а каждому светодиоду нужно питание по четырем выводам, три из которых отвечают за цветность, а четвертый контакт является общим: в зависимости от типа светодиода он может быть анодом или катодом.

3. Контроллер для управление RGB

Для разгрузки выводов МК применяются специальные контроллеры WS2801 (5 вольт) или WS2812B (12 вольт) (рис.5).

С применением отдельного контроллера нет необходимости занимать несколько выходов MK, можно ограничиться лишь одним сигнальным выводом. МК подает сигнал на вход «Data» управляющего контроллера светодиода WS2801.

В таком сигнале содержится 24-битная информация о яркости цвета (3 канала по 8 бит на каждый цвет), а также информация для внутреннего сдвигового регистра. Именно сдвиговый регистр позволяет определять, к какому светодиоду информация адресовывается. Таким образом можно соединять несколько светодиодов последовательно, при этом использовать все так же один вывод микроконтроллера (рис.6).

4. Адресуемый светодиод

Это RGB-светодиод, только с интегрированным контроллером WS2801 непосредственно на кристалле. Корпус светодиода выполнен в виде SMD компонента для поверхностного монтажа. Такой подход позволяет расположить светодиоды максимально близко друг другу, делая свечение более детализированным (рис.7).

В интернет-магазинах можно встретить адресные светодиодные ленты, когда в одном метре умещается до 144 штук (рис.8).

Стоит учесть, что один светодиод потребляет при полной яркости всего 60-70 мА, при подключении ленты, например, на 90 светодиодов, потребуется мощный блок питания с током не менее 5 ампер. Ни в коем случае не питайте светодиодную ленту через контроллер, иначе он перегреется и сгорит от нагрузки. Используйте внешние источники питания (рис.9).

5. Недостаток адресуемых светодиодов

Адресуемая светодиодная лента не может работать при слишком низких температурах: при -15 контроллер начинает подглючивать, на более сильном морозе велик риск его выхода из строя.

Второй недостаток в том, что если выйдет из строя один светодиод, следом по цепочке откажутся работать и все остальные: внутренний сдвиговый регистр не сможет передать информацию дальше.

6. Применение адресуемых светодиодных лент

Адресуемые светодиодные ленты можно применять для декоративной подсветки машины, аквариума, фоторамок и картин, в дизайне помещений, в качестве новогодних украшений и т.д.

Получается интересное решение, если светодиодную ленту использовать в качестве фоновой подсветки Ambilight для монитора компьютера (рис.10-11).

Если вы будете использовать микроконтроллеры на базе Arduino, вам понадобится библиотека FastLed для упрощения работы со светодиодной лентой ().