Паяльник с регулировкой температуры своими руками. Регулятор мощности для паяльника своими руками — схемы и варианты монтажа

Основой послужила статья в журнале Радио №10 за 2014г. Когда эта статья попалась на глаза, мне понравилась идея и простота реализации. Но сам я использую малогабаритные низковольтные паяльники.

Напрямую схему для низковольтных паяльников использовать нельзя из-за низкого сопротивления нагревателя паяльника и как следствие значительного тока измерительной цепи. Я решил переделать схему.

Получившиеся схема подходит для любого паяльника с напряжением питания до 30В. Нагреватель которого имеет положительный ТКС (горячий имеет большее сопротивление). Лучший результат даст керамический нагреватель. Например можно запустить паяльник от паяльной станции со сгоревшим термодатчиком. Но и паяльники с нагревателем из нихрома тоже работают.

Поскольку номиналы в схеме зависят от сопротивления и ТКС нагревателя то, прежде чем реализовывать надо выбрать и проверить паяльник. Измерить сопротивление нагревателя в холодном и горячем состоянии.

А также рекомендую проверить реакцию на механическую нагрузку. Один из моих паяльников оказался с подвохом. Измерьте сопротивление холодного нагревателя кратковременно включите и повторно проведите измерение. После прогрева измеряя сопротивление надавите на жало и легонько постучите имитируя работу с паяльником, следите на скачки сопротивления. Мой паяльник в итоге вел себя как будто у него не нагреватель а угольный микрофон. В итоге при попытке работы, чуть более сильное нажатие приводило к отключению из-за увеличения сопротивления нагревателя.

В итоге переделал собранную схему под паяльник ЭПСН с сопротивлением нагревателя 6 ом. Паяльник ЭПСН это худший вариант для данной схемы, низкий ТКС нагревателя и большая тепловая инертность конструкции делает термостабилизацию вялой. Но тем не менее время нагрева паяльника сократилось в 2 раза без перегрева, относительно нагрева напряжением дающим примерно такую же температуру. И при длительном лужении или пайке меньше падение температуры.

Рассмотрим алгоритм работы.

1. В начальный момент времени на входе 6 U1.2 напряжение близко к 0, оно сравнивается с напряжением с делителя R4,R5. На выходе U1.2 появляется напряжение. (Резистор ПОС R6 увеличивает гистерезис U1.2 для помеха защиты.)

2. С выхода U1.2 напряжение через резистор R8 открывает транзистор Q1. (Резистор R13 необходим для гарантированного закрытия Q1, если операционный усилитель не может выдать на выходе напряжение равное отрицательному напряжению питания)

3. Через нагреватель паяльника RN, диод VD3, резистор R9 и транзистор Q1 протекает измерительный ток. (мощность резистора R9 и ток транзистора Q1 выбирают исходя из величины измерительного тока, при этом падение напряжении на паяльнике стоит выбирать в районе 3 в, это компромисс между точностью измерения и мощностью рассеиваемой на R9. Если рассеиваемая мощность получается слишком большой то можно увеличить сопротивление R9,но точность стабилизации температуры снизится).

4. На входе 3 U1.1 при протекании измерительного тока появляется напряжение, зависимое от соотношения сопротивлений R9 и RN, а также падения напряжения на VD3 и Q1, которое сравнивается с напряжением с делителя R1, R2, R3.

5. Если напряжение на входе 3 усилителя U1.1 превысить напряжение на входе 2 (холодный паяльник низкое сопротивлении RN). На выходе 1 U1.1 появится напряжение.

6. Напряжение с выхода 1 U1.1 через разряженный конденсатор С2 и диод VD1 подает на вход 6 U1.2, в итоге закрывая Q1 и отключая R9 от измерительной цепи. (Диод VD1 требуется если операционный усилитель не допускает наличия на входе отрицательного напряжения.)

7. Напряжение с выхода 1 U1.1 через резистор R12 заряжает конденсатор С3 и емкость затвора транзистора Q2. И при достижении порогового напряжения транзистор Q2 открывается включая паяльник, при этом диод VD3 закрывается отключая сопротивление нагревателя паяльника RN от измерительной цепи. (Резистор R14 необходим для гарантированного закрытия Q2, если операционный усилитель не может выдать на выходе напряжение равное отрицательному напряжению питания, а также при более высоком напряжение питания схемы на затворе транзистора напряжение не превысило 12 в.)

8. От измерительной цепи отключены резистор R9 и сопротивление нагревателя RN. Напряжение на конденсаторе С1 поддерживается резистором R7, компенсируя возможные утечки через транзистор Q1 и диод VD3. Его сопротивление должно значительно превышать сопротивление нагревателя паяльника RN, чтобы не вносить погрешности в измерении. При этом конденсатор С3 требовался, что бы RN был отключен от измерительной цепи после отключения R9, иначе схема не защелкнется в положении нагрева.

9. Напряжение с выхода 1 U1.1 заряжает конденсатор С2 через резистор R10. Когда напряжение на входе 6 U1.2 достигнет половины напряжения питания откроется транзистор Q1 и начнется новый цикл измерения. Время зарядки выбирается в зависимости от тепловой инерции паяльника т.е. его размеров, для миниатюрного паяльника 0.5с для ЭПСН 5с . Делать слишком коротким цикл не стоит поскольку начнется стабилизация только температуры нагревателя. Указанные на схеме номиналы дают длительность цикла примерно 0.5с.

10. Через открытый транзистор Q1 и резистор R9 будет разряжен конденсатор С1. После падения напряжения на входе 3 U1.1 ниже входа 2 U1.1 на выходе появится низкое напряжение.

11. Низкое напряжение с выхода 1 U1.1 через диод VD2 разрядит конденсатор С2. А также через цепочку резистор R12 конденсатор С3 закроет транзистор Q2.

12. При закрытом транзисторе Q2 диод VD3 откроется и через измерительную цепь RN, VD3, R9, Q1 потечет ток. И начнется зарядка конденсатора С1. Если паяльник нагрелся выше установленной температуры и сопротивление RN увеличилось достаточно что бы напряжение на входе 3 U1.1 не превысило напряжение с делителя R1, R2, R3 на входе 2 U1.1, то на выходе 1 U1.1 сохранится низкое напряжение. Такое состояние продлится до тех пор пока паяльник не остынет ниже установленной резистором R2 температуры, тогда повторится цикл работы начиная с первого пункта.

Выбор компонентов.

1. Операционный усилитель я использовал LM358 с ней схема может работать до напряжения 30 в. Но можно например использовать TL 072 или NJM 4558 и т.д.

2. Транзистор Q1. Выбор зависит от величины измерительного тока. Если ток около 100 мА, то можно использовать транзисторы в миниатюрном корпусе, например в корпусе SOT-23 2N2222 или BC -817, Для больших измерительных токов возможно придется ставить более мощные транзисторы в корпусе TO-252 или SOT -223 с максимальным током 1А и более например D 882, D1802 и.т.д.

3. Резистор R9. Самая горячая деталь в схеме на нем рассеивается почти весь измерительный ток, мощность резистора можно примерно считать (U^2)/R9 . Сопротивление резистора подбирается, чтобы падение напряжение во время измерения на паяльнике было около 3В.

4. Диод VD3. Желательно для уменьшения падения напряжения использовать диод Шоттки с запасом по току.

5. Транзистор Q2. Любой силовой N MOSFET. Я использовал снятый со старой материнской платы 32N03.

6. Резистор R1, R2, R3. Суммарное сопротивление резисторов может быть от единиц килоом до сотен килоом, что позволяет подобрать сопротивления R1, R3 делителя, под имеющейся в наличие переменный резистор R2. Точно рассчитать значение резисторов делителя затруднительно поскольку в измерительной цепи присутствует транзистор Q1 и диод VD3, учесть точное падение напряжения на них сложно.

Примерное соотношение сопротивлений:
Для холодного паяльника R1/(R2+R3)≈ RNхол/ R9
Для максимально нагретого R1/R2≈ RNгор/ R9

7. Так как изменение сопротивления для стабилизации температуры намного меньше ома. То для подключения паяльника должны использоваться высококачественные разъемы, а еще лучше напрямую запаять кабель паяльника к плате.

8. Все диоды, транзисторы и конденсаторы должны быть рассчитаны на напряжение минимум в полтора раза выше напряжения питания.

Схема из-за наличия диода VD3 в измерительной цепи имеет небольшую чувствительность к изменению температуры и напряжения питания. Уже после изготовления пришла идея как уменьшить эти эффекты. Необходимо заменить Q1 на N MOSFET с низким сопротивлением в открытом состоянии и добавить еще один диод аналогичный VD3, Дополнительно оба диода можно соединить куском алюминии для теплового контакта.

Исполнение.

Я выполнил схему максимально используя компоненты SMD монтажа.Резисторы и керамические конденсаторы тип размера 0805. Электролиты в корпусе В. Микросхема LM358 в корпусе SOP-8. Диод ST34 в корпусе SMC. Транзистор Q1 можно монтировать в любом из SOT-23, TO-252 или SOT -223 корпусах. Транзистор Q2 может быть в корпусах TO-252 или TO-263. Резистор R2 ВСП4-1. Резистор R9 как самую горячую деталь лучше расположить вне платы, только для паяльников с мощностью менее 10вт можно в качестве R9 распаять 3 резистора 2512.

Плата из двух стороннего текстолита. На одной стороне медь не травится и используется под землю на плате отверстия в которые запаиваются перемычки обозначены как отверстия с металлизацией, остальные отверстия со стороны сплошной меди зенкеруются сверлом большего диаметра. Для плату надо распечатывать в зеркальном виде.

Немного теории. Или почему высокая частота управления не всегда хорошо.

Если спросить какая частота управления лучше. Скорее всего будет ответ чем выше тем лучше, т. е. тем точнее.

Попытаюсь объяснить как я понимаю этот вопрос.

Если брать вариант когда датчик находится на кончике жала то этот ответ правильный.

Но в нашем случае датчиком является нагреватель, хотя и во многих паяльных станциях датчик находится не в жале а рядом с нагревателем. Вот для таких случаев такой ответ будет не верен.

Начнем с точности удержания температуры.

Когда паяльник лежит на подставке и начинают сравнивать регуляторы температуры какая схема точнее держит температуру и речь зачастую идет о цифрах в один и меньше градуса. Но так ли важна точность температуры в этот момент? Ведь по сути более важно удержание температуры в момент пайки, т. е. насколько паяльник сможет удержать температуру при интенсивном отборе мощности от жала.

Представим упрощенную модель паяльника. Нагреватель к которому подводится мощность и жало от которого идет малый отбор мощности в воздух когда паяльник лежит на подставке или большой во время пайки. Оба эти элемента имеют тепловую инертность или по другому теплоемкость, как правило нагреватель имеет значительно более низкую теплоемкость. Но между нагревателем и жалом имеется тепловой контакт который имеет свое тепловое сопротивление, а это значит чтобы передать какую то мощность от нагревателя к жалу надо иметь разность температур. Тепловое сопротивление между нагревателем и жалом может иметь разную величину в зависимости от конструкции. В китайских паяльных станциях теплопередача происходит вообще через воздушный зазор и в итоге паяльник мощность пол сотни ват и по индикатору удерживающий температуру до градуса не может пропаять площадку на плате. Если датчик температуры находится в жале то можно просто увеличить температуру нагревателя. Но у нас датчик и нагреватель одно целое и при увеличении отбора мощности с жала в момент пайки температура жала будет падать поскольку из-за теплового сопротивление для передачи мощности нужно падение температуры.

Полностью решить эту проблему нельзя, но можно максимально уменьшить. И позволит это сделать более низкая теплоемкости нагревателя относительно жала. И так у нас противоречие для передачи мощности в жало надо увеличить температуру нагревателя для поддержания температуры жала, но мы не знаем температуры жала поскольку измеряем температуру у нагревателя.

Вариант управления реализованный в этой схеме позволяет разрешить эту дилемму простым способом. Хотя можно попытаться придумать и более оптимальные модели управления но сложность схемы возрастет.

И так в схеме энергия в нагреватель подается фиксированное время и оно достаточно длительное, чтобы нагреватель успевал разогрелся значительно выше температуры стабилизации. Между нагревателем и жалом появляется значительная разность температур и происходит передача тепловой мощности в жало. После выключения нагрева нагреватель и жало начинают остывать. Нагреватель остывает передавая мощность в жало, а жало остывает передавая мощность во внешнюю среду. Но за счет меньшей теплоемкости нагреватель успеет остыть до того как температура жала значительно изменится, а также и во время нагрева температура на жале не успеет сильно изменится. Повторное включение произойдет когда температура нагревателя упадет до температуры стабилизации, а так как передача мощности происходит в основном в жало, то температура нагревателя в этот момент будет слабо отличатся от температуры жала. И точность стабилизации будет тем выше чем меньше теплоемкость нагревателя и меньше тепловое сопротивление между нагревателем и жалом.

Если длительность цикла нагрева будет слишком низкой (высокая частота управления) то на нагревателе не будут возникать моменты перегрева когда происходит эффективный перенос мощности в жало. И как следствие в момент пайки будет сильное падение температуры жала.

При слишком большой длительности нагрева теплоемкости жала не будет хватать для сглаживания бросков температуры до приемлемой величины, и вторая опасность если при высокой мощности нагревателя тепловое сопротивление между нагревателем и жалом велико, то можно получить разогрев нагревателя выше допустимых для его работы температур, что приведет к его поломке.

В итоге как мне кажется необходимо подбирать время задающие элементы C2 R10 так, что бы при измерении температуры на конце жала были видны незначительные колебания температуры. С учетом точности индикации тестера и инертности датчика заметные колебания в один или несколько градусов не приведут к колебаниям реальной температуры более десятка градусов, а такая нестабильность температуры для радиолюбительского паяльника более чем достаточная.

Вот что окончательно получилось

Так как тот паяльник на который первоначально рассчитывал оказался не пригодным, то переделал в вариант под паяльник ЭПСН с 6 ом нагревателем. Без перегрева работал от 14в я подал на схему 19в, что бы был запас на регулирование.

Доработал под вариант с установкой VD3 и заменой Q1 на MOSFET. Плату не переделывал просто установил новые детали.

Чувствительность схемы к изменению напряжения питания полностью не пропала. Такая чувствительность не будет заметна на паяльниках с керамическим жалом, а для нихрома заметно становится при изменении питающего напряжения более 10%.

Плата ЛУТ

Распайка не совсем по схеме платы. Вместо резисторов распаял диод VD5 разрезал дорожку к транзистору и просверлил отверстие под провод от резистора R9.

На переднюю панель выходят светодиод и резистор. Плата будет крепится за переменный резистор, поскольку она не большая и механических нагрузок не предполагается.

Окончательно схема приобрела следующий вид указываю получившиеся у меня номиналы под любой другой паяльник необходимо подбирать как писал выше. Сопротивление нагревателя паяльника конечно не точно 6 ом. Транзистор Q1 пришлось брать этот из-за корпуса силовой не стал просто менять хотя они оба могут быть одинаковые. Резистор R9 даже ПЭВ-10 чувствительно нагревается. Конденсатор С6 особо не влияет на работу и я его убрал. На плате еще распаивал керамику параллельно С1 но нормально и без неё.

П.С. Интересно если кто соберет для паяльника с керамическим нагревателем, самому пока проверить не на чем. Пишите если нужны дополнительные материалы или пояснения.

Поскольку процесс пайки связан с расплавлением припоя, необходимо всегда выдерживать оптимальную температуру нагрева. Учитываются следующие факторы:

  • Температура плавления припоя (от 150 до 320 градусов);
  • Термостойкость элементов, на которых производится пайка. Многие радиокомпоненты просто выходят из строя при продолжительном нагреве, а изоляция проводов теряет свои свойства;
  • Площадь рассеивания контактов. При соединении массивных элементов, необходимо иметь запас по температуре и мощности.

Если вы просто спаиваете провода, достаточно знать мощность паяльника и примерную температуру плавления припоя. Критерий простой – быстрый или медленный нагрев.

А вот при монтаже печатных плат или ремонте электроприборов – неверно выбранная температура паяльника может вылиться в приобретение дорогостоящих радиодеталей, которые будут повреждены высокой температурой.

Температура паяльника для пайки – как подобрать

  1. Если монтаж не связан со специфическими радиодеталями, чувствительными к перегреву – степень нагрева жала должна на 10 градусов превышать температуру плавления припоя. Причем не точку начала расплава – а именно температуру устойчивого нахождения в жидком состоянии;
  2. Если планируется соединять контакты с большой площадью и массой – повышается не величина нагрева, а мощность паяльника. Маломощный прибор с высокой температурой все равно не справится с рассеиванием. Компенсируют массу детали соответствующим размером рабочего жала. А для его разогрева требуется мощность, а не градусы;
  3. В паспорте радиокомпонентов обычно указывается максимально допустимое значение нагрева корпуса. Это относится и к температуре пайки. Опять же, сделайте выбор в пользу мощности, а не повышения градуса. Надо стараться, чтобы время контакта жала и детали было минимальным. Припой должен расплавиться, а корпус оставаться не перегретым.

Для различных условий работы выпускаются паяльники электрические с регулировкой температуры.

Не имеет значения конструктивное исполнение, регулятор может быть встроенным в корпус или выполнен в виде отдельного блока. Главное – вы знаете, насколько горячее жало у инструмента.

На 12 вольт/8 ватт, но вот цена была несколько необычной, всего 80 рублей против 120, как в прочих торговых точках. Всё собирался сделать что-то подобное сам, а тут случай лишил такой возможности. Продавец заверил, что исправный и даже проверил, подключив к блоку питания. Пришёл домой, стал пробовать его в деле. Стабилизированный ИПБ как раз на его напряжение. Вроде всё нормально, олово плавит, только чуть медленнее обычного. В конце концов, разобрался и почему цена занижена и почему в работе «заторможенный». Оказалось паяльнику для нормальной работы нужно не 12 вольт, а чуть больше. Вспомнил о сыре в мышеловке, хотя конечно здесь немного другой случай. Для полноценной эксплуатации паяльника решил собрать простейший регулятор напряжения и питать его от блока питания на 17 вольт.

Схема регулятора

Схема проста «до неприличия» (из-за чего даже подвергалась жёсткой критике на одном из родственных сайтов) и должна, да нет, просто обязана заработать.

Тем не менее, произвёл предварительную сборку. В течении часа всё было в полном объёме смонтировано на импровизированную монтажную плату. И компоненты и установочные. Сразу появилась возможность для полноценной работы паяльником.

Тестировать собранное устройство, для полного понимания полученного результата, привлёк вольтметр и амперметр. Наблюдение изменения конкретных величин тока и напряжения всегда поможет быть объективным к результату своих стараний.

Видео

Напряжение на выходе до 16 вольт, максимальное токопотребление до 500 мА. В результате проделанных манипуляций пришёл к выводу, что транзистор стоит поставить по-мощнее. Например КТ829А. Мало ли куда удумаю подключить готовый регулятор и что через него запитать. Стабилизированного напряжения на выходе данный регулятор не даёт, замечено некоторое увеличение, хоть и очень медленное. А так как производить пайку планирую по времени непродолжительно, то это не препятствие.

За неделю несколько раз попользовался временной сборкой, работа устроила. Пора придать устройство более-менее «человеческий» вид. Подсобрал комплектующие: корпус, для его устойчивости металлический ролик, держатель паяльника и соединительный винт.

Так как ролик решил использовать ещё и как дополнительный радиатор, то изолировал его от держателя паяльника при помощи пластмассовой шайбы.

После размещения основных компонентов установил на вход и выход гнёзда RGB (напряжение и ток не большие), это позволит избежать установки постоянных проводов (которые всегда вечно путаются). И пользоваться уже готовыми, полностью оборудованными. Со времён видеомагнитофонов их скопилось предостаточно.

Основных компонентов транзистор да два резистора, а проводов всё равно хватает.

Вот, что получилось. Светодиод не случайно подключён на выход регулятора - с изменением выходного напряжения изменяется яркость его свечения, причём весьма значительно. Оборудовать регулятор чем-то вроде шкалы не стал - на корпусе вокруг осталось вполне достаточное количество рисок от прежнего его предназначения. Вот так благодаря схеме, увиденной на форуме сайта, удалось решить вопрос питания низковольтного паяльника с нестандартным напряжением питания. Сборку произвёл Babay iz Barnaula .

Обсудить статью ПОДСТАВКА И РЕГУЛЯТОР МОЩНОСТИ НИЗКОВОЛЬТНОГО ПАЯЛЬНИКА

Устройства для настройки уровня напряжения, подающегося на нагревательный элемент, нередко используются радиолюбителями для предотвращения преждевременного разрушения жала паяльника и повышения качества пайки. Наиболее распространенные мощности для паяльника содержат двухпозитронные контактные переключатели и тринисторные устройства, установленные в подставке. Эти и другие приборы обеспечивают возможность выбора необходимого уровня напряжения. Сегодня применяются самодельные и заводские установки.

Если нужно получить 40 Вт из паяльника на 100 Вт, можно применить схему на симисторе ВТ 138-600. Принцип работы заключается в обрезке синусоиды. Уровень среза и температуру нагрева можно регулировать, используя резистор R1. Неоновая лампочка выполняет функцию индикатора. Ставить ее не обязательно. На радиатор устанавливается симистор ВТ 138-600.

Корпус

Вся схема обязательно должна быть помещена в закрытый диэлектрический корпус. Желание сделать прибор миниатюрным не должно влиять на безопасность при его использовании. Помните, что устройство работает от источника напряжения 220 В.

Тринисторный регулятор мощности для паяльника

В качестве примера можно рассмотреть устройство, рассчитанное на нагрузку от нескольких ватт до сотни. Диапазон регулирования такого прибора изменяется от 50% до 97%. В устройстве используется тринистор КУ103В с удерживающим током не более одного миллиампера.

Через диод VD1 беспрепятственно проходят отрицательные полуволны напряжения, обеспечивая примерно половину всей мощности паяльника. Ее можно регулировать тринистором VS1 в течение каждого положительного полупериода. Устройство включается встречно-параллельно диоду VD1. Тринистор управляется по фазоимпульсному принципу. Генератор вырабатывает импульсы, поступающие на управляющий электрод, состоящий из цепи R5R6C1, задающей время, и однопереходного транзистора.

Позицией ручки резистора R5 определяется время от положительного полупериода. Схема регулятора мощности требует температурной стабильности и повышения помехоустойчивости. Для этого можно зашунтировать управляющий переход резистором R1.

Цепь R2R3R4VT3

Генератор питается импульсами напряжением до 7В и длительностью 10 мс, сформированными цепью R2R3R4VT3. Переход транзистора VT3 является стабилизирующим элементом. Он включается в обратном направлении. Мощность, которую рассеивает цепь резисторов R2-R4, будет уменьшена.

Схема регулятора мощности включает в себя резисторы — МЛТ и R5 - СП-0,4. Транзистор можно использовать любой.

Плата и корпус для прибора

Для сборки данного устройства подойдет плата из фольгированного стеклопластика диаметром 36 мм и толщиной 1 мм. Для корпуса можно использовать любые предметы, например пластиковые коробки или футляры из материала с хорошей изоляцией. Понадобится база под элементы вилки. Для этого к фольге можно припаять две гайки М 2,5 таким образом, чтобы штыри прижимали плату к корпусу при сборке.

Недостатки тринисторов КУ202

Если мощность паяльника небольшая, регулирование возможно только в узкой области полупериода. В той, где удерживающее напряжение тринистора хотя бы немного ниже тока нагрузки. Температурная стабильность не может быть достигнута, если использовать такой регулятор мощности для паяльника.

Повышающий регулятор

Большая часть устройств для стабилизации температуры работает только на снижение мощности. Регулировать напряжение можно от 50-100% или от 0-100%. Мощности паяльника может оказаться недостаточно в случае подачи питания ниже 220 В или, например, при необходимости выпаять большую старую плату.

Действующее напряжение сглаживается электролитическим конденсатором, увеличивается в 1,41 раза и питает паяльник. Постоянная мощность, выпрямленная на конденсаторе, достигнет 310 В при питании 220 В. Оптимальная температура нагрева может быть получена даже при 170 В.

Мощные паяльники не нуждаются в повышающих регуляторах.

Необходимые детали для схемы

Чтобы собрать удобный регулятор мощности для можно использовать метод навесного монтажа возле розетки. Для этого нужны малогабаритные комплектующие. Мощность одного резистора должна составлять не менее 2 Вт, а остальных - 0,125 Вт.

Описание схемы повышающего регулятора мощности

На электролитическом конденсаторе C1 с мостом VD1 выполнен входной выпрямитель. Его рабочее напряжение не должно быть меньше 400 В. На IRF840 размещается выходная часть регулятора. С этим устройством можно использовать паяльник до 65 Вт без радиатора. Они могут нагреваться выше нужной температуры даже при пониженной мощности питания.

Управление ключевым транзистором, размещенным на микросхеме DD1, производится от ШИМ-генератора, частота которого задается конденсатором C2. монтируется на приборах C3, R5 и VD4. Он питает микросхему DD1.

Для защиты выходного транзистора от самоиндукции устанавливается диод VD5. Его можно не ставить, если регулятор мощности паяльника не будет использоваться с другими электрическими приборами.

Возможности замены деталей в регуляторах

Микросхема DD1 может быть заменена на К561ЛА7. Выпрямительный мостик делается из диодов, рассчитанных на минимальный ток 2А. Устройство IRF740 можно использовать как выходной транзистор. Схема не нуждается в накладке, если все детали исправны и при ее сборке не было допущено ошибок.

Другие возможные варианты устройств для рассеивания напряжения

Собираются простые схемы регуляторов мощности для паяльника, работающие на симисторах КУ208Г. Вся их хитрость в конденсаторе и неоновой лампочке, которая, меняя свою яркость, может послужить в качестве индикатора мощности. Возможное регулирование - от 0% до 100%.

При отсутствии симистора или лампочки можно применить тиристор КУ202Н. Это весьма распространенный прибор, имеющий множество аналогов. С его использованием можно собрать схему, работающую в диапазоне от 50% до 99% мощности.

От компьютерного шнура можно использовать для изготовления петли, чтобы погасить возможные помехи от переключения симистора или тиристора.

Стрелочный индикатор

В регулятор мощности паяльника может быть интегрирован стрелочный индикатор для большего удобства при использовании. Сделать это совсем несложно. Неиспользуемая старая аудиоаппаратура может помочь с поиском таких элементов. Приборы несложно найти на местных рынках в любом городе. Хорошо, если один такой лежит дома без дела.

Для примера рассмотрим возможность интегрирования в регулятор мощности для паяльника индикатора М68501 со стрелкой и цифровыми отметками, который устанавливался в старых советских магнитофонах. Особенность настройки заключается в подборе резистора R4. Наверняка придется подбирать прибор R3 дополнительно, если будет использован другой индикатор. Необходимо соблюдение соответствующего баланса резисторов при понижении мощности паяльника. Дело в том, что стрелка индикатора может отображать снижение мощности на 10-20% при фактическом потреблении паяльником 50%, то есть наполовину меньше.

Заключение

Регулятор мощности для паяльника можно собрать, руководствуясь множеством инструкций и статей с приведенными примерами возможных разнообразных схем. От хороших припоев, флюсов и температуры нагревательного элемента во многом зависит качество спайки. Сложные устройства для стабилизации или элементарное интегрирование диодов может применяться при сборке аппаратов, необходимых для регулирования поступающего напряжения.

Такие приборы широко используются с целью понижения, а также повышения мощности, подающейся на нагревательный элемент паяльника в диапазоне от 0% до 141%. Это очень удобно. Появляется реальная возможность работать при напряжении ниже 220 В. На современном рынке доступны качественные аппараты, укомплектованные специальными регуляторами. Заводские устройства работают только на понижение мощности. Повышающий регулятор придется собирать самостоятельно.

Из-за проблемы с электричеством люди все чаще покупают регуляторы мощности. Не секрет, что резкие перепады, а также чрезмерно пониженное или повышенное напряжение пагубно влияют на бытовые приборы. Для того чтобы не допустить порчи имущества, необходимо пользоваться регулятором напряжения, который защитит от короткого замыкания и различных негативных факторов электронные приборы.

Типы регуляторов

В наше время на рынке можно увидеть огромное количество различных регуляторов как для всего дома, так и маломощных отдельных бытовых приборов. Существуют транзисторные регуляторы напряжения, тиристорные, механические (регулировка напряжения осуществляется при помощи механического бегунка с графитовым стержнем на конце). Но самым распространенным является симисторный регулятор напряжения. Основой этого прибора являются симисторы, которые позволяют резко среагировать на скачки напряжения и сгладить их.

Симистор представляет собой элемент, который содержит пять p-n переходов. Этот радиоэлемент имеет возможность пропускать ток как в прямом направлении, так и в обратном.

Эти компоненты можно наблюдать в различной бытовой технике начиная от фенов и настольных ламп и заканчивая паяльниками, где необходима плавная регулировка.

Принцип работы симистора довольно прост. Это своего рода электронный ключ, который то закрывает двери, то открывает их с заданной частотой. При открытии P-N перехода симистора он пропускает небольшую часть полуволны и потребитель получает только часть номинальной мощности. То есть чем больше открывается P-N переход, тем больше мощности получает потребитель.

К достоинствам этого элемента можно отнести:

В связи с вышесказанными достоинствами симисторы и регуляторы на их основе используются довольно часто.

Эта схема довольно проста в сборке и не требует большого количества деталей. Такой регулятор можно применить для регулировки не только температуры паяльника, но и обычных ламп накаливания и светодиодных. К этой схеме можно подключать различные дрели, болгарки, пылесосы, шлифмашинки, которые изначально шли без плавной регулировки скорости.

Вот такой регулятор напряжения 220в своими руками можно собрать из следующих деталей:

  • R1 - резистор 20 кОм, мощностью 0,25 Вт.
  • R2 - переменный резистор 400−500 кОм.
  • R3 - 3 кОм, 0,25 Вт.
  • R4-300 Ом, 0,5 Вт.
  • C1 C2 - конденсаторы неполярные 0,05 Мкф.
  • C3 - 0,1 Мкф, 400 в.
  • DB3 - динистор.
  • BT139−600 - симистор необходимо подобрать в зависимости от нагрузки которая будет подключен. Прибор, собранный по этой схеме, может регулировать ток величиной 18А.
  • К симистору желательно применить радиатор, так как элемент довольно сильно греется.

Схема проверена и работает довольно стабильно при разных видах нагрузки .

Существует еще одна схема универсального регулятора мощности.

На вход схемы подается переменное напряжение 220 В, а на выходе уже 220 В постоянного тока. Эта схема имеет в своем арсенале уже больше деталей, соответственно и сложность сборки повышается. На выход схемы возможно подключить любой потребитель (постоянного тока). В большинстве домов и квартир люди стараются поставить энергосберегающие лампы. Не каждый регулятор справится с плавной регулировкой такой лампы, например, тиристорный регулятор использовать нежелательно. Эта схема позволяет беспрепятственно подключать эти лампы и делать из них своего рода ночники.

Особенность схемы заключается в том, что при включении ламп на минимум все бытовые приборы должны быть отключены от сети. После этого в счетчике сработает компенсатор, и диск медленно остановится, а свет будет продолжать гореть. Это возможность собрать симисторный регулятор мощности своими руками. Номиналы деталей нужных для сборки, можно увидеть на схеме.

Еще одна занимательная схема, которая позволяет подключить нагрузку до 5А и мощностью до 1000Вт.

Регулятор собран на базе симистора BT06−600. Принцип работы этой схемы заключается в открытии перехода симистора. Чем больше элемент открыт, тем больше мощность поступает на нагрузку. А также в схеме присутствует светодиод, который даст знать, работает устройство или нет. Перечень деталей, которые понадобятся для сборки аппарата:

  • R1 - резистор 3.9 кОм и R2 - 500 кОм своеобразный делитель напряжения, который служит для зарядки конденсатора С1.
  • конденсатор С1- 0,22 мкФ.
  • динистор D1 - 1N4148.
  • светодиод D2, служит для индикации работы устройства.
  • динисторы D3 - DB4 U1 - BT06−600.
  • клемы для подключения нагрузки P1, P2.
  • резистор R3 - 22кОм и мощностью 2 вт
  • конденсатор C2 - 0.22мкФ рассчитан на напряжение не меньше 400 В.

Симисторы и тиристоры с успехом используются в качестве пускателей. Иногда необходимо запустить очень мощные тэны, управлять включением сварочного мощного оборудования, где сила тока достигает 300−400 А. Механическое включение и выключение с помощью контакторов уступает симисторному пускателю из-за быстрого износа контакторов, к тому же при механическом включении возникает дуга, которая также пагубно влияет на контакторы. Поэтому целесообразным будет использовать симисторы для этих целей. Вот одна из схем.

Все номиналы и перечень деталей указаны на Рис. 4. Достоинством этой схемы является полная гальваническая развязка от сети, что обеспечит безопасность в случае повреждения.

Нередко в хозяйстве необходимо выполнить сварочные работы. Если есть готовый инверторный сварочного аппарата, то сварка не представляет особых трудностей, поскольку в аппарате присутствует регулировка тока. У большинства людей нет такого сварочного и приходится пользоваться обычным трансформаторным сварочным, в котором регулировка тока осуществляется путем смены сопротивления, что довольно неудобно.

Тех, кто пробовал использовать в качестве регулятора симистор, ждет разочарование. Он не будет регулировать мощность. Это связано с фазовым сдвигом, из-за чего за время короткого импульса полупроводниковый ключ не успевает перейти в «открытый» режим.

Но существует выход из этой ситуации. Следует подать на управляющий электрод однотипный импульс или подавать на УЭ (управляющий электрод) постоянный сигнал, пока не будет проход через ноль. Схема регулятора выглядит следующим образом:

Конечно, схема довольно сложная в сборке, но такой вариант решит все проблемы с регулировкой. Теперь не нужно будет пользоваться громоздким сопротивлением, к тому же очень плавной регулировки не получится. В случае с симистором возможна довольно плавная регулировка.

Если существуют постоянные перепады напряжения, а также пониженное или повышенное напряжение, рекомендуется приобрести симисторный регулятор или по возможности сделать регулятор своими руками. Регулятор защитит бытовую технику, а также предотвратит ее порчу.